Advanced Search+
Dongao LI (李东澳), Liping ZHANG (张丽萍), Hongmei DU (杜洪梅). The instability of terahertz plasma waves in cylindrical FET[J]. Plasma Science and Technology, 2019, 21(4): 45002-045002. DOI: 10.1088/2058-6272/aaf874
Citation: Dongao LI (李东澳), Liping ZHANG (张丽萍), Hongmei DU (杜洪梅). The instability of terahertz plasma waves in cylindrical FET[J]. Plasma Science and Technology, 2019, 21(4): 45002-045002. DOI: 10.1088/2058-6272/aaf874

The instability of terahertz plasma waves in cylindrical FET

Funds: This work was supported by National Natural Foundation of China (No. 10975114), Research Projects of Higher Education of Gansu Province (No. 2017A-016) and HongLiu first-class disciplines Development Program of Lanzhou University of Technology.
More Information
  • Received Date: September 26, 2018
  • In this paper, the Dyakonov–Shur instability of terahertz (THz) plasma waves has been analyzed in gated cylindrical field effect transistor (FET). In the cylindrical FET, the hydrodynamic equations in cylindrical coordinates are used to describe the THz plasma wave in two- dimensional electronic gas. The research results show that the oscillation frequency of the THz plasma wave is increased by increasing the component of wave in the circumferential direction, but instability increment of the THz plasma wave are increased by increasing the radius of channel.
  • [1]
    Lin L et al 2018 Mater. Res. Express 5 045802
    [2]
    Zeitler J A and Gladden L F 2009 Eur. J. Pharm. Biopharm. 71 2
    [3]
    Wang X X et al 2018 AIP Adv. 8 105029
    [4]
    Siles J V and Grajal J 2010 IEEE Trans. Microw. Theory Tech. 58 1933
    [5]
    Ding Y J and Shi W 2006 Solid-State Electron. 50 1128
    [6]
    Tonouchi M 2007 Nat. Photon. 1 97
    [7]
    Dyakonov M and Shur M 1993 Phys. Rev. Lett. 71 2465
    [8]
    Cheremisin M V and Samsonidze G G 2008 Solid-State Electron. 52 338
    [9]
    Dmitriev A P, Furman A S and Kachorovskii V Y 1996 Phys. Rev. B 54 14020
    [10]
    Zhang L P 2016 Plasma Sci. Technol. 18 360
    [11]
    Wang D P et al 2018 Frequenz 72 471
    [12]
    Dyakonov M and Shur M 2005 Appl. Phys. Lett. 87 111501
    [13]
    Dyakonov M I 2008 Semiconductors 42 984
    [14]
    Sydoruk O, Syms R R A and Solymar L 2010 Appl. Phys. Lett. 97 263504
    [15]
    Rahmatallahpur S and Rostami A 2016 Superlattices Microstruct. 97 176
    [16]
    Rahmatallahpur S and Rostami A 2016 Optik 127 8294
  • Cited by

    Periodical cited type(14)

    1. Chen, H., Wang, X., Chen, Y. et al. High-sensitivity refractive index sensor based on strong localized surface plasmon resonance. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2024, 41(4): 664-673. DOI:10.1364/JOSAA.517964
    2. Petrov, A.S., Svintsov, D. Viscosity-Limited Drift Instabilities in Two-Dimensional Electron Systems. Physical Review Applied, 2022, 17(5): 054026. DOI:10.1103/PhysRevApplied.17.054026
    3. Zhang, Y., Shur, M.S. P-Diamond, Si, GaN, and InGaAs TeraFETs. IEEE Transactions on Electron Devices, 2020, 67(11): 4858-4865. DOI:10.1109/TED.2020.3027530
    4. Zhang, L., Du, H., Li, D. Effect of viscous electron flow on THz plasma waves in field effect transistors. Chinese Journal of Physics, 2020. DOI:10.1016/j.cjph.2020.07.002
    5. Noei, M., Linn, T., Jungemann, C. A numerical approach to quasi-ballistic transport and plasma oscillations in junctionless nanowire transistors. Journal of Computational Electronics, 2020, 19(3): 975-986. DOI:10.1007/s10825-020-01488-4
    6. Wang, X., Wu, Y., Wen, X. et al. Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure. Optical and Quantum Electronics, 2020, 52(5): 238. DOI:10.1007/s11082-020-02360-2
    7. Li, D., Zhang, L., Su, J. Investigation of the Dyakonov-Shur instability for THz plasma waves in quantum gated cylindrical FET. AIP Advances, 2019, 9(12): 125126. DOI:10.1063/1.5130598
    8. Tong, H., Xu, Y., Su, Y. et al. Theoretical study for fabricating elliptical subwavelength nanohole arrays by higher-order waveguide-mode interference. Results in Physics, 2019. DOI:10.1016/j.rinp.2019.102460
    9. Wang, X., Bai, X., Pang, Z. et al. Surface-enhanced Raman scattering by composite structure of gold nanocube-PMMA-gold film. Optical Materials Express, 2019, 9(4): 359587. DOI:10.1364/OME.9.001872
    10. Wang, X., Wu, X., Zhu, J. et al. Theoretical investigation of a highly sensitive refractive-index sensor based on TM 0 waveguide mode resonance excited in an asymmetric metal-cladding dielectric waveguide structure. Sensors (Switzerland), 2019, 19(5): 1187. DOI:10.3390/s19051187
    11. Wang, X., Bai, X., Pang, Z. et al. Investigation of surface plasmons in Kretschmann structure loaded with a silver nano-cube. Results in Physics, 2019. DOI:10.1016/j.rinp.2019.02.002
    12. Wang, X., Tong, H., Pang, Z. et al. Theoretical realization of three-dimensional nanolattice structure fabrication based on high-order waveguide-mode interference and sample rotation. Optical and Quantum Electronics, 2019, 51(2): 38. DOI:10.1007/s11082-019-1759-2
    13. Wang, X., Zhu, J., Wen, X. et al. Wide range refractive index sensor based on a coupled structure of Au nanocubes and Au film. Optical Materials Express, 2019, 9(7): 3079-3088. DOI:10.1364/OME.9.003079
    14. Wang, X., Zhu, J., Tong, H. et al. A theoretical study of a plasmonic sensor comprising a gold nano-disk array on gold film with a SiO2 spacer. Chinese Physics B, 2019, 28(4): 044201. DOI:10.1088/1674-1056/28/4/044201

    Other cited types(0)

Catalog

    Article views (151) PDF downloads (159) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return