Advanced Search+
Jian CHEN (陈坚), Tianzuo FU (付天佐), Heng GUO (郭恒), Heping LI (李和平), Dongjun JIANG (姜东君), Mingsheng ZHOU (周明胜). Effects of electron temperature on the ion extraction characteristics in a decaying plasma confined between two parallel plates[J]. Plasma Science and Technology, 2019, 21(4): 45402-045402. DOI: 10.1088/2058-6272/aaf884
Citation: Jian CHEN (陈坚), Tianzuo FU (付天佐), Heng GUO (郭恒), Heping LI (李和平), Dongjun JIANG (姜东君), Mingsheng ZHOU (周明胜). Effects of electron temperature on the ion extraction characteristics in a decaying plasma confined between two parallel plates[J]. Plasma Science and Technology, 2019, 21(4): 45402-045402. DOI: 10.1088/2058-6272/aaf884

Effects of electron temperature on the ion extraction characteristics in a decaying plasma confined between two parallel plates

Funds: This work was supported by National Natural Science Foundation of China (No. 11775128)
More Information
  • Received Date: September 07, 2018
  • In this paper, a one-dimension particle-in-cell (PIC) code (EDIPIC) is employed to simulate the parallel-plate ion extraction process under an externally applied electrostatic field, focusing on the analysis of the influence of the initial electron temperature on the extracted ion fluxes to the metal plates during the ion extraction process. Compared with previously published results, the plasma oscillations on a timescale of the electron plasma period, and the excitation of the ion acoustic rarefaction waves resulting from the plasma oscillations originating from both the negative and positive electrodes, are studied for the first time. The modeling results show that both the negative and positive extractors can collect ions due to the plasma oscillations and the propagation of the ion acoustic rarefaction waves. With the increase of the initial electron temperature achieved by keeping other parameters unchanged, on the one hand, both the ion speed and flux to the negative and positive plates increase, which leads to a significant decrease of the ion extraction time, while on the other hand, the ion flux to the positive plate after the formation of a Child–Langmuir sheath is much more sensitive to an increase of the initial electron temperature than that to the negative plate. The PIC simulation results provide a deeper physical understanding of the influence of the initial electron temperature on the characteristics of the entire ion extraction process in a decaying plasma.
  • [1]
    Hershkowitz N 2005 Phys. Plasmas 12 055502
    [2]
    Shi J J et al 2003 J. Appl. Phys. 94 6303
    [3]
    Chu P K et al 2002 Mater. Sci. Eng. R Rep. 36 143
    [4]
    Kares R J 1992 J. Appl. Phys. 71 2155
    [5]
    Aston G and Wilbur P J 1981 J. Appl. Phys. 52 2614
    [6]
    Niu H and Houk R S 1996 Spectrochim. Acta B 51 779
    [7]
    Chen F F 1995 Phys. Plasmas 2 2164
    [8]
    Chen F F 1982 Phys. Fluids 25 2385
    [9]
    M?ndl S, Günzel R and M?ller W 1998 J. Phys. D Appl. Phys. 31 1109
    [10]
    Riemann K U and Daube T 1999 J. Appl. Phys. 86 1202
    [11]
    Skorik M A and Hershkowitz N 1994 Phys. Plasmas 1 1338
    [12]
    Allen J E and Andrews J G 1970 J. Plasma Phys. 4 187
    [13]
    Crow J E, Auer P L and Allen J E 1975 J. Plasma Phys. 14 65
    [14]
    Wickens L M and Allen J E 1979 J. Plasma Phys. 22 167
    [15]
    Murakami M et al 2005 Phys. Plasmas 12 062706
    [16]
    Kosarev N I 2015 Quantum Electron. 45 228
    [17]
    Jana B et al 2015 Eur. Phys. J. D 69 62
    [18]
    Majumder A et al 2008 Phys. Plasmas 15 123508
    [19]
    Yamada K, Tetsuka T and Deguchi Y 1991 J. Appl. Phys. 69 8064
    [20]
    Chen J et al 2017 High Voltage Eng. 43 1830 (in Chinese)
    [21]
    Yamada K, Tetsuka T and Deguchi Y 1990 J. Appl. Phys. 67 6734
    [22]
    Kurosawa H, Hasegawa S and Suzuki A 2002 J. Appl. Phys. 91 4818
    [23]
    Nishio R et al 1995 J. Nucl. Sci. Technol. 32 180
    [24]
    Matsui T et al 1996 Phys. Plasmas 3 4367
    [25]
    Matsui T et al 1997 Phys. Plasmas 4 3518
    [26]
    Vitello P, Cerjan C and Braun D 1992 Phys. Fluids B 4 1447
    [27]
    Murakami M and Nishihara K 1993 Phys. Fluids B 5 3441
    [28]
    Li H P et al 2015 High Voltage Eng. 41 2825 (in Chinese)
    [29]
    Li H P et al 2016 High Voltage Eng. 42 706 (in Chinese)
    [30]
    Okano K 1992 J. Nucl. Sci. Technol. 29 601
    [31]
    Ohzu A et al 2000 Appl. Phys. Lett. 76 1822
    [32]
    Sydorenko D et al 2015 Phys. Plasmas 22 123510
    [33]
    Sydorenko D et al 2018 Phys. Plasmas 25 011606
    [34]
    Vahedi V and Surendra M 1995 Comput. Phys. Commun. 87 179
    [35]
    Manheimer W M, Lampe M and Joyce G 1997 J. Comput. Phys. 138 563
    [36]
    Sydorenko D 2006 Particle-in-Cell Simulations of Electron Dynamics in Low Pressure Discharges with Magnetic Fields PhD University of Saskatchewan, Saskatoon, Canada
    [37]
    Zetner P W et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 5123
    [38]
    Chen J et al 2018 Acta Phys. Sin. 67 182801 (in Chinese)
    [39]
    Ogura K, Arisawa T and Shibata T 1992 Jpn. J. Appl. Phys. 31 1485
    [40]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (Hoboken, NJ: Wiley)
    [41]
    Widner M et al 1970 Phys. Fluids 13 2532
    [42]
    Chen F F 2016 Introduction to Plasma Physics and Controlled Fusion 3rd edn (Cham: Springer) (https://doi.org/10.1007/ 978-3-319-22309-4)
  • Cited by

    Periodical cited type(16)

    1. Xu, A., Wan, X., Gan, P. et al. Study on the Influence of Pressure on Ion Extraction Characteristics. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3530562
    2. Wang, Y.-T., Luo, L.-Y., Li, H.-P. et al. Theoretical Analysis and Case Studies of One-Dimensional Ion Extraction Processes. Journal of Engineering Physics and Thermophysics, 2024, 97(6): 1641-1650. DOI:10.1007/s10891-024-03042-6
    3. Chen, J., Wang, Z. Excitation of ion acoustic solitary waves and shock waves in decaying plasma between biased parallel-plate electrodes. AIP Advances, 2024, 14(10): 105319. DOI:10.1063/5.0229844
    4. Xu, A., Gan, P., Wan, X. et al. Influence of ion species on extraction characteristics of mixed ion beams. Chinese Physics B, 2024, 33(9): 095202. DOI:10.1088/1674-1056/ad5c3d
    5. Majumder, A., Pulhani, A.K. Ion-collection characteristics of photoplasma for atomic vapor laser isotope separator module in electrostatic fields. Physics of Plasmas, 2024, 31(1): 013505. DOI:10.1063/5.0178441
    6. Sun, J.-Y., Chen, X., Zhao, K. et al. Particle simulations of ion-extraction process from a decaying plasma assisted by radio-frequency plasma heating. Plasma Sources Science and Technology, 2023, 32(12): 125009. DOI:10.1088/1361-6595/ad1014
    7. Wang, Y.-T., Sun, X.-L., Luo, L.-Y. et al. Theoretical analyses on the one-dimensional charged particle transport in a decaying plasma under an electrostatic field. Chinese Physics B, 2023, 32(9): 095201. DOI:10.1088/1674-1056/ace033
    8. Singh, P., Sridhar, G., Maiti, N. Expansion of a finite-size photoplasma in an electrostatic field with M-type electrode configuration using a novel adaptive mesh 2D-PIC code. Current Applied Physics, 2023. DOI:10.1016/j.cap.2022.12.007
    9. Wang, Y.-T., Luo, L.-Y., Li, H.-P. et al. Non-equilibrium transport of charged particles in a wall-confined decaying plasma under an externally applied electric field | [外加电场作用下的壁面约束衰亡等离子体中带电粒子非平衡输运特性]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(23): 232801. DOI:10.7498/aps.71.20221431
    10. Sun, H., Chen, J., Kaganovich, I.D. et al. Physical regimes of electrostatic wave-wave nonlinear interactions generated by an electron beam propagating in a background plasma. Physical Review E, 2022, 106(3): 035203. DOI:10.1103/PhysRevE.106.035203
    11. Wang, Y.-T., Chen, J., Li, H.-P. et al. Analysis and particle-in-cell simulation on the similarity relation during an ion extraction process. Journal of Physics: Conference Series, 2022, 2147(1): 012013. DOI:10.1088/1742-6596/2147/1/012013
    12. Yahya, K.A.. Enhancement of Electron Temperature under Dense Homogenous Plasma by Pulsed Laser Beam. Baghdad Science Journal, 2021, 18(4): 1344-1349. DOI:10.21123/BSJ.2021.18.4.1344
    13. Wang, Y.-T., Chen, J., Li, H.-P. et al. Modeling of the charged particle transport process in a decaying plasma with a Π-type electrode configuration. Japanese Journal of Applied Physics, 2021. DOI:10.35848/1347-4065/abb75c
    14. Chen, J., Li, J., Li, H. et al. Critical Value of the Electron Number Density for the Initial Electron Temperature Effect of the Ion Transport in a Decaying Plasma | [衰亡等离子体中产生离子输运初始电子温度效应的临界电子数密度判据]. Gaodianya Jishu/High Voltage Engineering, 2020, 46(2): 729-736. DOI:10.13336/j.1003-6520.hve.20200131042
    15. Mei, D., Fang, Z., Shao, T. Recent Progress on Characteristics and Applications of Atmospheric Pressure Low Temperature Plasmas | [大气压低温等离子体特性与应用研究现状]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40(4): 1339-1358. DOI:10.13334/j.0258-8013.pcsee.191615
    16. Chen, J., Khrabrov, A.V., Wang, Y.-T. et al. Beam-assisted extraction of charged particles from a decaying plasma. Plasma Sources Science and Technology, 2020, 29(2): 025010. DOI:10.1088/1361-6595/ab5b5c

    Other cited types(0)

Catalog

    Article views (133) PDF downloads (225) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return