Citation: | Yan HUI (辉妍), Na LU (鲁娜), Pengzhen LUO (罗朋振), Kefeng SHANG (商克峰), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification[J]. Plasma Science and Technology, 2019, 21(5): 54006-054006. DOI: 10.1088/2058-6272/aafae1 |
[1] |
Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
|
[2] |
Eliasson B, Hirth M and Kogelschatz U 1987 J. Phys. D: Appl. Phys. 20 1421
|
[3] |
Boeuf J P 2003 J. Phys. D: Appl. Phys. 36 R53
|
[4] |
Lu N et al 2017 Top. Catal. 60 855
|
[5] |
Lu N, Luo P, Guo Y, Shang K, Zhang X, Li J and Wu Y 2016 IEEE Trans. Plasma Sci. 44 3052–9
|
[6] |
Xia Y et al 2017 Int. J. Hydrogen Energy 42 22776
|
[7] |
Di L B et al 2016 Plasma Sci. Technol. 18 544
|
[8] |
Xiao Z H et al 2017 Plasma Sci. Technol. 19 064009
|
[9] |
Huang F M et al 2017 Plasma Sci. Technol. 19 045504
|
[10] |
Ji P H, Qu G Z and Li J 2013 Plasma Sci. Technol. 15 1059
|
[11] |
Qu G Z et al 2014 Plasma Sci. Technol. 16 608
|
[12] |
Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400
|
[13] |
Fridman A, Chirokov A and Gutsol A 2005 J. Phys. D: Appl. Phys. 38 R1
|
[14] |
Chiang M H et al 2010 IEEE Trans. Plasma Sci. 38 1489
|
[15] |
Li R X et al 2004 Chem. Lett. 33 412
|
[16] |
Chavadeja S, Dulyalaksananon W and Suttikul T 2016 Chem. Eng. Process.: Process Intensif. 107 127
|
[17] |
Suttiku T and Chavadej C 2017 Ind. Eng. Chem. Res. 56 12547
|
[18] |
Fang Z et al 2007 J. Phys. D: Appl. Phys. 40 1401
|
[19] |
Wang X X et al 2006 Plasma Sources Sci. Technol. 15 845
|
[20] |
Yao S et al 2004 AIChE J. 50 1901
|
[21] |
Golubovskii Y B et al 2004 J. Phys. D: Appl. Phys. 37 1346
|
[22] |
Martin S et al 2004 Surf. Coat. Technol. 177–178 693
|
[23] |
Fang Z et al 2012 Vacuum 86 1305
|
[24] |
Sawada Y, Ogawa S and Kogoma M 1995 J. Phys. D: Appl. Phys. 28 1661
|
[25] |
Trunec D et al 2004 J. Phys. D:Appl. Phys. 37 2112
|
[26] |
Okazaki S et al 1993 J. Phys. D:Appl. Phys. 26 889
|
[27] |
Lu N et al 2018 Plasma Chem. Plasma Process. 38 1239
|
[28] |
Radu I, Bartnikas R and Wertheimer M R 2005 IEEE Trans. Plasma Sci. 33 280
|
[29] |
Bayoda K D, Benard N and Moreau E 2015 J. Phys.: Conf. Ser. 646 012054
|
[30] |
Navrátil Z et al 2006 Plasma Sources Sci. Technol. 15 8
|
[31] |
?imek M et al 2018 Plasma Sources Sci. Technol. 27 055019
|
[32] |
Bierstedt A et al 2015 J. Anal. At. Spectrom. 30 2496
|
[33] |
Massines F et al 2003 Surf. Coat. Technol. 174–175 8
|
[34] |
Takana H and Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001
|
[35] |
Wu Y et al 2012 IEEE Trans. Plasma Sci. 40 1371
|
[36] |
Chandra D V S 1998 IEEE Trans. Aerosp. Electron. Syst. 34 1009
|
[37] |
Ye Q Z et al 2012 Plasma Sources Sci. Technol. 21 065008
|
[38] |
Wu Y F et al 2013 Vacuum 91 28
|
1. | Yang, X., Keener, K.M., Cheng, J.-H. Enhancing the discharge uniformity of atmospheric pressure DBD cold plasma for food efficient microbial inactivation. Journal of Food Engineering, 2025. DOI:10.1016/j.jfoodeng.2024.112389 | |
2. | Zhou, Y., Fang, Z., Zhang, Y. et al. Surface Hydrophilic Modification of Polypropylene by Nanosecond Pulsed Ar/O2 Dielectric Barrier Discharge. Materials, 2025, 18(1): 95. DOI:10.3390/ma18010095 | |
3. | Ran, J., Chen, Q., Zhou, Y. et al. Comparative Study on Surface Modification of Polyethylene Terephthalates by Four Discharge Modes. Plasma Processes and Polymers, 2025. DOI:10.1002/ppap.70023 | |
4. | Zhang, L., Zhang, Z., Zhang, D. et al. Hydrophilic surface modification of polypropylene by AC-DBD and NS-DBD. Surfaces and Interfaces, 2024. DOI:10.1016/j.surfin.2024.104093 | |
5. | Liu, F., Li, S., Zhao, Y. et al. The effect of pulse voltage rise rate on the polypropylene surface hydrophilic modification by ns pulsed nitrogen DBD. Plasma Science and Technology, 2023, 25(10): 104001. DOI:10.1088/2058-6272/acd529 | |
6. | Liu, F., Wang, Y., Wang, W. et al. Generation of the high power by a coaxial dielectric barrier discharge with a perforated electrode in atmospheric pressure air. Physics of Plasmas, 2023, 30(9): 093508. DOI:10.1063/5.0160137 | |
7. | Liang, C., Liu, Z., Sun, B. et al. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor. Chinese Journal of Chemical Engineering, 2023. DOI:10.1016/j.cjche.2022.11.016 | |
8. | Zhu, Y., Huang, J., Guo, S. et al. Enhancement of Hydrophobic Properties of Epoxy Resin by Large Area Dielectric Barrier Discharge Plasma Treatment Device. 2023. DOI:10.1109/ICEMPE57831.2023.10139490 | |
9. | Li, S., Li, J., Fu, Y. et al. Interaction between plasma jet and silicone rubber covered by porous inorganic contaminants: Surface hydrophobicity or hydrophilicity?. High Voltage, 2022, 7(6): 1023-1033. DOI:10.1049/hve2.12122 | |
10. | Chen, J., Zhang, D., Ding, Y. et al. Effects of Pulse Repetition Frequency and Voltage Slew Rate on the Uniformity of Air Dielectric Barrier Discharge. 2022. DOI:10.1109/ICHVE53725.2022.10014478 | |
11. | Li, S., Ding, Y., Zhao, Y. et al. Effect of pulse voltage slew rate on the uniformity of polypropylene surface hydrophilic modification by nanosecond pulsed dielectric barrier discharge. Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, 2022. DOI:10.1109/CEIDP55452.2022.9985297 | |
12. | Shi, Y., Lu, Y., Cai, Y. et al. Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration. Plasma Science and Technology, 2021, 23(11): 115505. DOI:10.1088/2058-6272/ac1dfd | |
13. | Guo, Y., Liu, P., Zhang, L. et al. Disinfection of Escherichia coli in ice by surface dielectric barrier discharge plasma. Applied Physics Letters, 2021, 119(9): 090601. DOI:10.1063/5.0064020 | |
14. | Lu, N., Liu, N., Hui, Y. et al. Characterization of highly effective plasma-treated g-C3N4 and application to the photocatalytic H2O2 production. Chemosphere, 2020. DOI:10.1016/j.chemosphere.2019.124927 | |
15. | Zhao, L., Liu, W., Xu, M. et al. Study on atmospheric air glow discharge plasma generation based on multiple potentials and aramid fabric surface modification. Plasma Processes and Polymers, 2019, 16(12): 1900114. DOI:10.1002/ppap.201900114 | |
16. | Guo, L.-T., Dong, L.-F., Wang, Z.-Y. et al. White Eyes Superlattice Concentric Ring Luminescent Pattern in Dielectric Barrier Discharge | [介质阻挡放电中白眼超点阵同心圆环发光斑图]. Faguang Xuebao/Chinese Journal of Luminescence, 2019, 40(10): 1311-1317. DOI:10.3788/fgxb20194010.1311 |