Advanced Search+
Yan HUI (辉妍), Na LU (鲁娜), Pengzhen LUO (罗朋振), Kefeng SHANG (商克峰), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification[J]. Plasma Science and Technology, 2019, 21(5): 54006-054006. DOI: 10.1088/2058-6272/aafae1
Citation: Yan HUI (辉妍), Na LU (鲁娜), Pengzhen LUO (罗朋振), Kefeng SHANG (商克峰), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification[J]. Plasma Science and Technology, 2019, 21(5): 54006-054006. DOI: 10.1088/2058-6272/aafae1

Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification

Funds: The authors gratefully acknowledge financial support from the Joint Funds of National Natural Science Foundation of China (No. U1462105).
More Information
  • Received Date: August 23, 2018
  • The classification of spatial characteristics and discharge modes of dielectric barrier discharge (DBD) are gaining increasing attention in industrial applications, especially in the field of surface treatment of materials. In this work, gray level histogram (GLH) and Fourier energy spectrum based on the digital image processing technology are applied to investigate the spatial structure and discharge mode of mesh-plate DBD. The coefficient of variation (CV) is calculated to describe the uniformity of the discharge. The results show that the discharge mode of mesh-plate DBD changes from periodic discharge to filamentary discharge when the applied voltage increases from 11–15 kV. Moreover, a more regular spatial structure is obtained under lower applied voltages during the discharge process. It is also found that the apertures of mesh electrodes which are below 1mm have smaller values of CV compared to plate electrodes, indicating more uniform discharge. Finally, polypropylene is treated by mesh-plate DBD for surface modification. The hydrophilicity is significantly improved as the water contact angle decreased by 64°, and the dyeing depth is also enhanced.
  • [1]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [2]
    Eliasson B, Hirth M and Kogelschatz U 1987 J. Phys. D: Appl. Phys. 20 1421
    [3]
    Boeuf J P 2003 J. Phys. D: Appl. Phys. 36 R53
    [4]
    Lu N et al 2017 Top. Catal. 60 855
    [5]
    Lu N, Luo P, Guo Y, Shang K, Zhang X, Li J and Wu Y 2016 IEEE Trans. Plasma Sci. 44 3052–9
    [6]
    Xia Y et al 2017 Int. J. Hydrogen Energy 42 22776
    [7]
    Di L B et al 2016 Plasma Sci. Technol. 18 544
    [8]
    Xiao Z H et al 2017 Plasma Sci. Technol. 19 064009
    [9]
    Huang F M et al 2017 Plasma Sci. Technol. 19 045504
    [10]
    Ji P H, Qu G Z and Li J 2013 Plasma Sci. Technol. 15 1059
    [11]
    Qu G Z et al 2014 Plasma Sci. Technol. 16 608
    [12]
    Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400
    [13]
    Fridman A, Chirokov A and Gutsol A 2005 J. Phys. D: Appl. Phys. 38 R1
    [14]
    Chiang M H et al 2010 IEEE Trans. Plasma Sci. 38 1489
    [15]
    Li R X et al 2004 Chem. Lett. 33 412
    [16]
    Chavadeja S, Dulyalaksananon W and Suttikul T 2016 Chem. Eng. Process.: Process Intensif. 107 127
    [17]
    Suttiku T and Chavadej C 2017 Ind. Eng. Chem. Res. 56 12547
    [18]
    Fang Z et al 2007 J. Phys. D: Appl. Phys. 40 1401
    [19]
    Wang X X et al 2006 Plasma Sources Sci. Technol. 15 845
    [20]
    Yao S et al 2004 AIChE J. 50 1901
    [21]
    Golubovskii Y B et al 2004 J. Phys. D: Appl. Phys. 37 1346
    [22]
    Martin S et al 2004 Surf. Coat. Technol. 177–178 693
    [23]
    Fang Z et al 2012 Vacuum 86 1305
    [24]
    Sawada Y, Ogawa S and Kogoma M 1995 J. Phys. D: Appl. Phys. 28 1661
    [25]
    Trunec D et al 2004 J. Phys. D:Appl. Phys. 37 2112
    [26]
    Okazaki S et al 1993 J. Phys. D:Appl. Phys. 26 889
    [27]
    Lu N et al 2018 Plasma Chem. Plasma Process. 38 1239
    [28]
    Radu I, Bartnikas R and Wertheimer M R 2005 IEEE Trans. Plasma Sci. 33 280
    [29]
    Bayoda K D, Benard N and Moreau E 2015 J. Phys.: Conf. Ser. 646 012054
    [30]
    Navrátil Z et al 2006 Plasma Sources Sci. Technol. 15 8
    [31]
    ?imek M et al 2018 Plasma Sources Sci. Technol. 27 055019
    [32]
    Bierstedt A et al 2015 J. Anal. At. Spectrom. 30 2496
    [33]
    Massines F et al 2003 Surf. Coat. Technol. 174–175 8
    [34]
    Takana H and Nishiyama H 2014 Plasma Sources Sci. Technol. 23 034001
    [35]
    Wu Y et al 2012 IEEE Trans. Plasma Sci. 40 1371
    [36]
    Chandra D V S 1998 IEEE Trans. Aerosp. Electron. Syst. 34 1009
    [37]
    Ye Q Z et al 2012 Plasma Sources Sci. Technol. 21 065008
    [38]
    Wu Y F et al 2013 Vacuum 91 28
  • Cited by

    Periodical cited type(16)

    1. Yang, X., Keener, K.M., Cheng, J.-H. Enhancing the discharge uniformity of atmospheric pressure DBD cold plasma for food efficient microbial inactivation. Journal of Food Engineering, 2025. DOI:10.1016/j.jfoodeng.2024.112389
    2. Zhou, Y., Fang, Z., Zhang, Y. et al. Surface Hydrophilic Modification of Polypropylene by Nanosecond Pulsed Ar/O2 Dielectric Barrier Discharge. Materials, 2025, 18(1): 95. DOI:10.3390/ma18010095
    3. Ran, J., Chen, Q., Zhou, Y. et al. Comparative Study on Surface Modification of Polyethylene Terephthalates by Four Discharge Modes. Plasma Processes and Polymers, 2025. DOI:10.1002/ppap.70023
    4. Zhang, L., Zhang, Z., Zhang, D. et al. Hydrophilic surface modification of polypropylene by AC-DBD and NS-DBD. Surfaces and Interfaces, 2024. DOI:10.1016/j.surfin.2024.104093
    5. Liu, F., Li, S., Zhao, Y. et al. The effect of pulse voltage rise rate on the polypropylene surface hydrophilic modification by ns pulsed nitrogen DBD. Plasma Science and Technology, 2023, 25(10): 104001. DOI:10.1088/2058-6272/acd529
    6. Liu, F., Wang, Y., Wang, W. et al. Generation of the high power by a coaxial dielectric barrier discharge with a perforated electrode in atmospheric pressure air. Physics of Plasmas, 2023, 30(9): 093508. DOI:10.1063/5.0160137
    7. Liang, C., Liu, Z., Sun, B. et al. Improvement in discharge characteristics and energy yield of ozone generation via configuration optimization of a coaxial dielectric barrier discharge reactor. Chinese Journal of Chemical Engineering, 2023. DOI:10.1016/j.cjche.2022.11.016
    8. Zhu, Y., Huang, J., Guo, S. et al. Enhancement of Hydrophobic Properties of Epoxy Resin by Large Area Dielectric Barrier Discharge Plasma Treatment Device. 2023. DOI:10.1109/ICEMPE57831.2023.10139490
    9. Li, S., Li, J., Fu, Y. et al. Interaction between plasma jet and silicone rubber covered by porous inorganic contaminants: Surface hydrophobicity or hydrophilicity?. High Voltage, 2022, 7(6): 1023-1033. DOI:10.1049/hve2.12122
    10. Chen, J., Zhang, D., Ding, Y. et al. Effects of Pulse Repetition Frequency and Voltage Slew Rate on the Uniformity of Air Dielectric Barrier Discharge. 2022. DOI:10.1109/ICHVE53725.2022.10014478
    11. Li, S., Ding, Y., Zhao, Y. et al. Effect of pulse voltage slew rate on the uniformity of polypropylene surface hydrophilic modification by nanosecond pulsed dielectric barrier discharge. Annual Report - Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, 2022. DOI:10.1109/CEIDP55452.2022.9985297
    12. Shi, Y., Lu, Y., Cai, Y. et al. Experimental study on the parameter optimization and application of a packed-bed dielectric barrier discharge reactor in diesel particulate filter regeneration. Plasma Science and Technology, 2021, 23(11): 115505. DOI:10.1088/2058-6272/ac1dfd
    13. Guo, Y., Liu, P., Zhang, L. et al. Disinfection of Escherichia coli in ice by surface dielectric barrier discharge plasma. Applied Physics Letters, 2021, 119(9): 090601. DOI:10.1063/5.0064020
    14. Lu, N., Liu, N., Hui, Y. et al. Characterization of highly effective plasma-treated g-C3N4 and application to the photocatalytic H2O2 production. Chemosphere, 2020. DOI:10.1016/j.chemosphere.2019.124927
    15. Zhao, L., Liu, W., Xu, M. et al. Study on atmospheric air glow discharge plasma generation based on multiple potentials and aramid fabric surface modification. Plasma Processes and Polymers, 2019, 16(12): 1900114. DOI:10.1002/ppap.201900114
    16. Guo, L.-T., Dong, L.-F., Wang, Z.-Y. et al. White Eyes Superlattice Concentric Ring Luminescent Pattern in Dielectric Barrier Discharge | [介质阻挡放电中白眼超点阵同心圆环发光斑图]. Faguang Xuebao/Chinese Journal of Luminescence, 2019, 40(10): 1311-1317. DOI:10.3788/fgxb20194010.1311

    Other cited types(0)

Catalog

    Article views (180) PDF downloads (233) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return