Citation: | J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba |
[1] |
Chang J P and Coburn J B 2003 J. Vac. Sci. Technol. A 21 S145
|
[2] |
Allgood C C 2003 J. Fluorine Chem. 122 105
|
[3] |
Namose I 2003 IEEE Trans. Semicond. Manuf. 16 429
|
[4] |
Tsai W T, Chen H P and Hsien W Y 2002 J. Loss Prev. Process Ind. 15 65
|
[5] |
Gompel J V 2000 Semicon. Int. 23 321
|
[6] |
Venkataramani N 2002 Curr. Sci. 83 254
|
[7] |
Choi S 2009 Improvement of CF 4 Pyrolysis Process by Using a Plasma Torch with Hollow Electrodes [PhD] Seoul National University
|
[8] |
Jia L and Li J S 2004 J. Therm. Sci. 13 366
|
[9] |
Xie H D, Sun B and Zhu X M 2009 J. Hazard. Mater. 168 765
|
[10] |
Radoiu M T 2004 Radiat. Phys. Chem. 69 113
|
[11] |
Sikdar S K, Burckle J and Rogut J 2001 Environ. Prog. 20 1
|
[12] |
Müller E A 2005 Environ. Sci. Technol. 39 8736
|
[13] |
Ahn N G et al 2006 J. Chem. Eng. Data 51 451
|
[14] |
Park D W 1988 A Study of Particle Heating by a Thermal Plasma a Flow Confined in a Tube [PhD] Tokyo Institute of Technology (in Japanese)
|
[15] |
Benocci R, Bonizzoni G and Sindoni E 1996 Thermal Plasmas for Hazardous Waste Treatment (Singapore: World Scientific)
|
[16] |
Pfender E 1999 Plasma Chem. Plasma Proc. 19 1
|
[17] |
Park H W, Cha B and Uhm S 2018 Appl. Chem. Eng. 29 10 (in Korean)
|
[18] |
Sun J W and Park D W 2003 Korean J. Chem. Eng. 20 476
|
[19] |
Kim D Y and Park D W 2008 Surface Coat. Technol. 202 5280
|
[20] |
Kim K S 2005 Three-dimensional and Turbulent Nature of Arc Discharge Phenomena Inside a Plasma Torch with Hollow Electrodes For Thermal Plasma Processing [PhD] Seoul National University
|
[21] |
Choi S et al 2012 Chem. Eng. J. 185–186 193
|
[22] |
Choi S, Park D W and Watanabe T 2012 Nucl. Eng. Technol. 44 21
|
[23] |
Choi S et al 2011 J. Therm. Sci. Technol. 6 210
|
[24] |
Hur M and Hong S H 2002 J. Phys. D: Appl. Phys. 35 1946
|
[25] |
Murphy A B and Arundelli C J 1994 Plasma Chem. Plasma Proc. 14 451
|
[26] |
Scott D A, Kovitya P and Haddad G N 1989 J. Appl. Phys. 66 5232
|
[27] |
Paik S et al 1993 Plasma Chem. Plasma Proc. 13 379
|
[28] |
Choi S et al 2009 J. Korean Phys. Soc. 55 1819
|
[29] |
Kang K D and Hong S H 1996 IEEE Trans. Plasma Sci. 24 89
|
[30] |
Launder B E and Spalding D B 1974 Comp. Methods Appl. Mech. Eng. 31 269
|
[31] |
Kim T H, Choi S and Park D W 2012 Curr. Appl. Phys. 12 509
|
[32] |
Arabzadeh Esfarjani S et al 2012 J. Phys.: Conf. Ser. 406 012011
|
[33] |
Modica A P and Sillers S J 1968 J. Chem. Phys. 48 3283
|
1. | Pang, Y., Li, H., Hua, Y. et al. Rapid Synthesis of Noble Metal Colloids by Plasma–Liquid Interactions. Materials, 2024, 17(5): 987. DOI:10.3390/ma17050987 |
2. | Yue, X., Xiang, H., Zhang, P. et al. Cold plasma-induced N, Cu-doping on carbon paper for high-active catalytic electrode preparation. Plasma Processes and Polymers, 2024, 21(3): 2300140. DOI:10.1002/ppap.202300140 |
3. | Ma, X., Lin, Z., Feng, T. et al. Fabricating 0D/1D/2D Ag/Carbon Nanotube/WS2 Heterostructure for Boosted Hydrogen Evolution Reaction in Akaline and Acidic Conditions. Energy and Fuels, 2023, 37(21): 16824-16832. DOI:10.1021/acs.energyfuels.3c02967 |
4. | Zhang, X., Ma, X., Li, M. et al. Enhanced antibacterial activity of cotton via silver nanocapsules deposited by atmospheric pressure plasma jet. Plasma Science and Technology, 2023, 25(3): 035503. DOI:10.1088/2058-6272/ac92d2 |
5. | Shepida, M., Kuntyi, O., Sukhatskiy, Y. et al. Microplasma Synthesis of Antibacterial Active Silver Nanoparticles in Sodium Polyacrylate Solutions. Bioinorganic Chemistry and Applications, 2021. DOI:10.1155/2021/4465363 |
6. | Lu, P., Kim, D.-W., Park, D.-W. Silver nanoparticle-loaded filter paper: Innovative assembly method by nonthermal plasma and facile application for the reduction of methylene blue. Surface and Coatings Technology, 2019. DOI:10.1016/j.surfcoat.2019.03.019 |