Advanced Search+
Dian ZHANG (张点), Jun ZHANG (张军), Song LI (李嵩), Jing LIU (刘静), Huihuang ZHONG (钟辉煌). Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge[J]. Plasma Science and Technology, 2019, 21(4): 44003-044003. DOI: 10.1088/2058-6272/aafbc3
Citation: Dian ZHANG (张点), Jun ZHANG (张军), Song LI (李嵩), Jing LIU (刘静), Huihuang ZHONG (钟辉煌). Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge[J]. Plasma Science and Technology, 2019, 21(4): 44003-044003. DOI: 10.1088/2058-6272/aafbc3

Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge

Funds: This work is supported by the funding of National University of Defense Technology Research Program ZK-16-03-12.
More Information
  • Received Date: August 24, 2018
  • To satisfy the demands for compact, inexpensive terahertz (THz) sources with power of hundreds of watts, a radial sheet beam THz source which does not require an external magnetic field and is driven by a radial pseudospark discharge plasma electron gun (PSDP-EGUN) is proposed. Radial design has been used in pseudospark switches, but in this paper the design of a PSDP-EGUN to drive a radial THz source is presented for the first time. Being different from the latest reported axial quasi-rectangular sheet beam THz sources driven by an axial PSDP-EGUN, a new design consisting of a circular plate-shaped sheet beam that is directly generated by the radial PSDP-EGUN is reported. As compared to an axial system, the radial configuration may result in a larger beam current and a larger beam-wave interaction area together with a higher potential of THz output power. Theoretical analysis and particle-in-cell simulation have been employed in the design of the radial sheet beam THz source. Output powers in the kilowatt range have been observed in the simulation of this 0.22 THz source. Preliminary experimental results of the radial PSDP-EGUN are also presented.
  • [1]
    Dragoman D and Dragoman M 2004 Prog. Quantum Electron. 28 1
    [2]
    Idehara T and Sabchevski S P 2012 J. Infrared, Millim. Terahz. Waves 33 667
    [3]
    He W et al 2015 Appl. Phys. Lett. 107 133501
    [4]
    Kumar N et al 2015 Rev. Sci. Instrum. 86 013503
    [5]
    Zhao J et al 2017 Phys. Plasmas 24 033118
    [6]
    Shu G X et al 2018 IEEE Electron Device Lett. 39 432
    [7]
    Zhao J et al 2017 Phys. Plasmas 24 060703
    [8]
    Shu G X et al 2018 Appl. Phys. Lett. 112 033504
    [9]
    Dang F C et al 2015 Phys. Plasmas 22 093301
    [10]
    Lamba R P et al 2015 Rev. Sci. Instrum. 86 103508
    [11]
    Wessel-Berg T 2005 7th International High Energy Density and High Power RF Workshop (Kalamata, Greece: American Institute of Physics)
    [12]
    Hu J and Rovey J L 2013 J. Appl. Phys. 114 073301
    [13]
    Caryotakis G 2004 High Power Klystrons: Theory and Practice at the Stanford Linear Accelerator Center Part I: SLAC-PUB-10620 (Menlo Park, CA: Stanford Linear Accelerator Center)
    [14]
    Li S et al 2017 Phys. Plasmas 24 053107
    [15]
    Kamada T et al 2005 Japan. J. Appl. Phys. 44 6747
    [16]
    Yin H et al 2004 IEEE Trans. Plasma Sci. 32 233
  • Related Articles

    [1]Seul-Ki HAN, Se-Hwan PARK, Seong-Kyu AHN. Uranium measurements using laser-induced breakdown spectroscopy in lithium chloride- potassium chloride salt of pyroprocessing[J]. Plasma Science and Technology, 2020, 22(7): 74015-074015. DOI: 10.1088/2058-6272/ab85bc
    [2]Eshraga A A SIDDIG (尚晓冉), Yu XU (徐雨), Tao HE (何涛), Ming GAO (高明), Baojing YANG (杨宝敬), Tianshu WANG (王天舒), Jing ZHANG (张菁). Plasma-induced graft polymerization on the surface of aramid fabrics with improved omniphobicity and washing durability[J]. Plasma Science and Technology, 2020, 22(5): 55503-055503. DOI: 10.1088/2058-6272/ab65dd
    [3]R L TANNA, J GHOSH, Harshita RAJ, Rohit KUMAR, Suman AICH, Vaibhav RANJAN, K A JADEJA, K M PATEL, S B BHATT, K SATHYANARAYANA, P K CHATTOPADHYAY, M N MAKWANA, K S SHAH, C N GUPTA, V K PANCHAL, Praveenlal EDAPPALA, Bharat ARAMBHADIYA, Minsha SHAH, Vismay RAULJI, M B CHOWDHURI, S BANERJEE, R MANCHANDA, D RAJU, P K ATREY, Umesh NAGORA, J RAVAL, Y S JOISA, K TAHILIANI, S K JHA, M V GOPALKRISHANA. Plasma production and preliminary results from the ADITYA Upgrade tokamak[J]. Plasma Science and Technology, 2018, 20(7): 74002-074002. DOI: 10.1088/2058-6272/aabb4f
    [4]Keping YAN (闫克平), Qikang JIN (金杞糠), Chao ZHENG (郑超), Guanlei DENG (邓官垒), Shengyong YIN (殷胜勇), Zhen LIU (刘振). Pulsed cold plasma-induced blood coagulation and its pilot application in stanching bleeding during rat hepatectomy[J]. Plasma Science and Technology, 2018, 20(4): 44005-044005. DOI: 10.1088/2058-6272/aa9b79
    [5]Shiheng YIN (尹诗衡), Li REN (任力), Yingjun WANG (王迎军). Plasma graft of poly(ethylene glycol) methyl ether methacrylate (PEGMA) on RGP lens surface for reducing protein adsorption[J]. Plasma Science and Technology, 2017, 19(1): 15501-015501. DOI: 10.1088/1009-0630/19/1/015501
    [6]YU Jie(俞洁), YANG Gege(杨格格), PAN Yuanpei(潘元沛), LU Quanfang(陆泉芳), YANG Wu(杨武), GAO Jinzhang(高锦章). Poly (Acrylamide-co-Acrylic Acid) Hydrogel Induced by Glow- Discharge Electrolysis Plasma and Its Adsorption Properties for Cationic Dyes[J]. Plasma Science and Technology, 2014, 16(8): 767-776. DOI: 10.1088/1009-0630/16/8/07
    [7]YIN Shiheng (尹诗衡), REN Li (任力), WANG Yingjun (王迎军). Argon Plasma-Induced Graft Polymerization of PEGMA on Chitosan Membrane Surface for Cell Adhesion Improvement[J]. Plasma Science and Technology, 2013, 15(10): 1041-1046. DOI: 10.1088/1009-0630/15/10/15
    [8]LI Xiangqing(李湘庆), HUA Hui(华辉), JIANG Dongxing(江栋兴), YE Yanlin(叶沿林). Study of Isotopic Distribution of the Projectile-like Fragments Produced in the 17,18N + 197Au Reactions at 33MeV/u[J]. Plasma Science and Technology, 2012, 14(6): 455-459. DOI: 10.1088/1009-0630/14/6/04
    [9]YU Hong(于红), YU Shenjing(于沈晶), REN Chunsheng(任春生), XIU Zhilong(修志龙). Plasma-Induced Degradation of Polypropene Plastics in Natural Volatile Constituents of Ledum palustre Herb[J]. Plasma Science and Technology, 2012, 14(2): 157-161. DOI: 10.1088/1009-0630/14/2/14
    [10]LAN Yan, YOU Qingliang, CHENG Cheng, ZHANG Suzhen, NI Guohua, M. NAGATSU, MENG Yuedong. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(1): 88-92.

Catalog

    Article views (202) PDF downloads (359) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return