Advanced Search+
Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余), Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余). Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode[J]. Plasma Science and Technology, 2019, 21(5): 55101-055101. DOI: 10.1088/2058-6272/aafdc7
Citation: Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余), Yun YUAN (袁赟), Xingqiang LU (路兴强), Jiaqi DONG (董家齐), Zhixiong HE (何志雄), Ruibo ZHANG (张睿博), Shijia CHEN (陈诗佳), Xueyu GONG (龚学余). Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode[J]. Plasma Science and Technology, 2019, 21(5): 55101-055101. DOI: 10.1088/2058-6272/aafdc7

Influence of stationary driven helical current on the m=2/n=1 resistive tearing mode

Funds: This work is supported by the National Key R&D Program of China (No. 2017YFE0302000), the Natural Science Foundation of Hunan Province (No. 2017JJ2230), National Natural Science Foundation of China (Nos. 11675073 and 11375085), and the Key Laboratory of Magnetic Confinement Nuclear Fusion Research in Hengyang (2018KJ108).
More Information
  • Received Date: September 25, 2018
  • The influence of stationary driven helical current on tearing mode instability in the m=2/n=1 rational surface is explored numerically using resistive magnetohydrodynamic simulation in cylindrical geometry. The results indicate that the flip instabilities result from the sustained injection of the sufficiently strong helical current driven in the island O-point. The driven helical current induces high order harmonics of instabilities due to the delay of suppressing timing and the increase of its current intensity. With the appropriate current density values, the development of the perturbed kinetic energy can be limited and the occurrence of the flip instabilities can be delayed for a long time. The radial deviation of the current deposition can lead to poor inhibition effect, and the effect of current bias on the boundary is greater than that on the axis.
  • [1]
    Furth H P, Rutherford P H and Selberg H 1973 Phys. Fluids 16 1054
    [2]
    Pletzer A and Perkins F W 1999 Phys. Plasmas 6 1589
    [3]
    Fietz S et al 2015 Nucl. Fusion 55 013018
    [4]
    ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD 1999 Nucl. Fusion 39 2577
    [5]
    Yu Q, Günter S and Lackner K 2000 Phys. Rev. Lett. 85 2949
    [6]
    Heidbrink W W et al 2000 Nucl. Fusion 40 935
    [7]
    Persson M 1991 Nucl. Fusion 31 382
    [8]
    Chan V and Guest G 1982 Nucl. Fusion 22 272
    [9]
    Kurita G et al 1994 Nucl. Fusion 34 1497
    [10]
    Yu Q et al 2000 Phys. Plasmas 7 312
    [11]
    Giruzzi G et al 1999 Nucl. Fusion 39 107
    [12]
    Fisch N J 1987 Rev. Mod. Phys. 59 175
    [13]
    Prater R et al 2003 Nucl. Fusion 43 1128
    [14]
    Petty C C et al 2004 Nucl. Fusion 44 243
    [15]
    Chapman I T et al 2012 Nucl. Fusion 52 063006
    [16]
    Sozzi C et al 2012 EPJ Web Conf. 32 02017
    [17]
    Felici F et al 2012 Nucl. Fusion 52 074001
    [18]
    Kirov K K et al 2002 Plasma Phys. Control. Fusion 44 2583
    [19]
    Maraschek M et al 2007 Phys. Rev. Lett. 98 025005
    [20]
    Zohm H et al 2007 Nucl. Fusion 47 228
    [21]
    Xu H D et al 2016 Plasma Sci. Technol. 18 442
    [22]
    Liang S Y et al 2016 Plasma Sci. Technol. 18 197
    [23]
    Zhang Y et al 2016 Fusion Sci. Technol. 70 62
    [24]
    Hegna C C and Callen J D 1997 Phys. Plasmas 4 2940
    [25]
    Rutherford P H 1973 Phys. Fluids 16 1903
    [26]
    Borgogno D et al 2014 Phys. Plasmas 21 060704
    [27]
    Chen L et al 2014 Phys. Plasmas 21 102106
    [28]
    Février O et al 2016 Plasma Phys. Control. Fusion 58 045015
    [29]
    Wang S, Ma Z W and Zhang W 2016 Phys. Plasmas 23 052503
    [30]
    Wang X J et al 2018 Nucl. Fusion 58 016045
    [31]
    Zhang W, Wang S and Ma Z W 2017 Phys. Plasmas 24 062510
    [32]
    Jenkins T G et al 2010 Phys. Plasmas 17 012502
    [33]
    Yuan Y et al 2018 Phys. Plasmas 25 012510
    [34]
    Ishii Y et al 2000 Phys. Plasmas 7 4477
  • Cited by

    Periodical cited type(1)

    1. Zhang, R., Lu, X., Guo, W. et al. Effect of local toroidal flow on double-tearing modes in cylindrical geometry. Contributions to Plasma Physics, 2020, 60(9): e202000026. DOI:10.1002/ctpp.202000026

    Other cited types(0)

Catalog

    Article views (161) PDF downloads (149) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return