Advanced Search+
Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa
Citation: Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa

Discharge characteristics of different lightning air terminals under composite voltages

Funds: The work is partly supported by National Natural Science Foundation of China (No. 51577098), the State Grid Corporation of China, and China Southern Power Grid.
More Information
  • Received Date: October 11, 2018
  • Different types of lightning air terminals have been designed over the years. Concern regarding the effect of different types of air terminals, especially the early streamer emission (ESE)-type, remains controversial. This paper describes the discharge characteristics of different types of air terminals, two of which are quite similar to the ESE-type dynasphere, and concludes that the tested non-standard air terminals have discharge characteristics similar to those of Franklin rods and that their lightning protection performance should be similar.
  • [1]
    Sidik M A B et al 2013 Electr. Eng. 95 367
    [2]
    Zeng R et al 2016 High Voltage 1 2
    [3]
    Zhuang C J et al 2016 IEEE Trans. Mag. 52 9400604
    [4]
    Zhuang C J and Zeng R 2013 Appl. Math. Comput. 219 9925
    [5]
    Pecastaing L et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 789
    [6]
    Van Brunt R J, Nelson T L and Stricklett K L 2000 IEEE Electr. Insul. Mag. 16 5
    [7]
    Bean C A and Lee W C 2012 Early streamer emission terminal US Patent 8232472
    [8]
    Moore C B 1983 J. Frank. Inst. 315 61
    [9]
    Moore C B, Aulich G D and Rison W 2000 Geophys. Res. Lett. 27 1487
    [10]
    Aleksandrov N L et al 2005 J. Phys. D: Appl. Phys. 38 1225
    [11]
    D’Alessandro F and Gumley J R 2001 J. Electrostat. 50 279
    [12]
    Mousa A M 2012 J. Lightning Res. 4 118
  • Related Articles

    [1]Biao HUANG, Xuan ZHOU, She WANG, Chijie ZHUANG, Rong ZENG, Le DENG. Observation and analysis of positive leader re-illumination in a 10 m ultra-high voltage transmission line gap under switching impulse voltages[J]. Plasma Science and Technology, 2024, 26(10): 105502. DOI: 10.1088/2058-6272/ad56cb
    [2]Jianghai GENG, Guo LIN, Ping WANG, Yujian DING, Yang DING, Hua YU. Modification of streamer-to-leader transition model based on radial thermal expansion in the sphere-plane gap discharge at high altitude[J]. Plasma Science and Technology, 2024, 26(1): 015501. DOI: 10.1088/2058-6272/ad0c1c
    [3]Jianghai GENG, Quansheng WANG, Xiaomin Liu, Ping WANG, Fangcheng LYU, Yujian DING. Dynamic development model for long gap discharge streamer-leader system based on fractal theory[J]. Plasma Science and Technology, 2022, 24(9): 095402. DOI: 10.1088/2058-6272/ac6cd2
    [4]Han CHEN(陈汉), Fusheng WANG(王富生), Xiu XIONG(熊秀), Zheng HE(何征), Zhufeng YUE(岳珠峰). Plasma discharge characteristics of segmented diverter strips subject to lightning strike[J]. Plasma Science and Technology, 2019, 21(2): 25301-025301. DOI: 10.1088/2058-6272/aaeba9
    [5]Qiming LIN (林启明), Su ZHAO (赵谡), Dengming XIAO (肖登明), Baijie ZHOU (周柏杰). Breakdown characteristics of CF3I/N2/CO2 mixture in power frequency and lightning impulse voltages[J]. Plasma Science and Technology, 2019, 21(1): 15401-015401. DOI: 10.1088/2058-6272/aade83
    [6]Zhouming ZHANG (张洲铭), Zhaorui NI (倪兆瑞), Dengming XIAO (肖登明), Yizhou WU (吴亦舟). Insulation characteristics of triple mixtures of c-C4F8/N2/CO2 under lightning impulse voltage[J]. Plasma Science and Technology, 2018, 20(10): 105405. DOI: 10.1088/2058-6272/aace9d
    [7]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [8]CHEN She (陈赦), ZENG Rong (曾嵘), ZHUANG Chijie (庄池杰), ZHOU Xuan (周旋), DING Yujian (丁玉剑). Experimental Study on Branch and Diffuse Type of Streamers in Leader Restrike of Long Air Gap Discharge[J]. Plasma Science and Technology, 2016, 18(3): 305-310. DOI: 10.1088/1009-0630/18/3/15
    [9]LI Xuechen (李雪辰), ZHAO Huanhuan (赵欢欢), JIA Pengying (贾鹏英). Characteristics of a Normal Glow Discharge Excited by DC Voltage in Atmospheric Pressure Air[J]. Plasma Science and Technology, 2013, 15(11): 1149-1153. DOI: 10.1088/1009-0630/15/11/13
    [10]TAO Xiaoping (陶小平), LU Rongde (卢荣德), LI Hui (李辉). Electrical characteristics of dielectric-barrier discharges in atmospheric pressure air using a power-frequency voltage source[J]. Plasma Science and Technology, 2012, 14(8): 723-727. DOI: 10.1088/1009-0630/14/8/08
  • Cited by

    Periodical cited type(8)

    1. He, J., Zhuang, C. Analysis Мethods for Lightning Shielding Failure of Transmission Lines and Associated Applicability | [超/特高压输电线路雷电绕击分析方法及其适应性]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44(18): 7426-7439. DOI:10.13334/j.0258-8013.pcsee.240391
    2. Xie, P., Jiang, Z., Liu, W. et al. Multi-perspective observation of streamer discharge morphology. Energy Reports, 2023. DOI:10.1016/j.egyr.2023.05.057
    3. Ozdemir, A., Ilhan, S. Experimental performance analysis of conventional and non-conventional lightning protection systems – preliminary results. Electric Power Systems Research, 2023. DOI:10.1016/j.epsr.2022.109080
    4. Pei, Z., Chen, W., Chen, J. et al. Experimental Evaluation Method for Lightning Attractive Efficiency Difference of Different Lightning Rods | [不同类型避雷针雷击接闪效能差异的实验评价方法]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(11): 3854-3862. DOI:10.13336/j.1003-6520.hve.20211433
    5. Gao, J., Wang, L., Li, G. et al. Discharge of Air Gaps During Ground Potential Live-Line Work on Transmission Lines. Electric Power Systems Research, 2020. DOI:10.1016/j.epsr.2020.106519
    6. Du, M., Tang, Y., Li, M. et al. Thermal characteristics of positive leaders under different electrode terminals in a long air gap. Energies, 2019, 12(21): en12214024. DOI:10.3390/en12214024
    7. Deng, J., Xie, Z., Qian, H. et al. Study on the properties of compounds formed by the reaction of SF6 gas with metal electrode. Electrical Engineering, 2019, 101(3): 935-941. DOI:10.1007/s00202-019-00838-1
    8. Cui, Y., Zhuang, C., Zeng, R. et al. Shock wave in a long-air-gap leader discharge. AIP Advances, 2019, 9(6): 065011. DOI:10.1063/1.5100519

    Other cited types(0)

Catalog

    Article views (181) PDF downloads (318) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return