Advanced Search+
Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b
Citation: Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b

Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration

Funds: This work has been supported by National Natural Science Foundation of China (Nos. 11475103, 21627812), the National Key Research and Development Program of China (No. 2016YFD0102106), and Tsinghua University Initiative Scientific Program (20161080108).
More Information
  • Received Date: November 26, 2018
  • Cold atmospheric plasma (CAP) jet has wide applications in various fields including advanced materials synthesis and modifications, biomedicine, environmental protection and energy saving, etc. Appropriate control on the volume, temperature and chemically reactive species concentrations of the CAP jet is of great importance in actual applications. In this paper, an radio-frequency atmospheric-pressure glow discharge (RF-APGD) plasma generator with a hybrid cross-linear-field electrode configuration is proposed. The experimental results show that, with the aid of the copper mesh located at the downstream of the traditional co-axial-type plasma generator with a cross-field electrode configuration, a linear field between the inner powered electrode of the traditional plasma generator and the copper mesh can be established. This liner- field can, to some extent, enhance the discharges at the upstream of the copper mesh, resulting in small increments (all less than 12.5%) of the species emission intensities, electron excitation temperatures and gas temperatures by keeping other parameters being unchanged. And due to the intrinsic transparent and conducting features of the grounded copper mesh to the gas flowing, electric current and heat flux of the plasma plumes, a plasma region with higher concentrations of chemically reactive species and larger plasma plume diameters is obtained at the downstream of the grounded copper mesh on the same level of the gas temperature and electron excitation temperature compared to those of the plasma free jet. In addition, the charged particle number densities at the same downstream axial location of the grounded copper mesh decrease significantly compared to those of the plasma free jet. This means that the copper mesh is also, to some extent, helpful for separating the chemically reactive neutral species from the charged particles inside a plasma environment. The preceding results indicate that the cross-linear-field electrode configuration of the plasma generator is an effective approach for tuning the characteristics of the RF-APGD plasma jet in order to obtain an appropriate combination of the plasma jet properties with higher chemically reactive species concentrations, especially relative higher number densities of neutral species, larger plasma volumes and lower gas temperatures.
  • [1]
    Shimizu T et al 2017 J. Phys. D: Appl. Phys. 50 503001
    [2]
    Graves D B et al 2017 IEEE Trans. Radiat. Plasma Med. Sci. 1 281
    [3]
    Weltmann K-D et al 2017 Plasma Phys. Control. Fusion 59 014031
    [4]
    Li H P et al 2017 High Volt. 2 188
    [5]
    Li H P et al 2012 IEEE Trans. Plasma Sci. 40 2853
    [6]
    Zhang X et al 2014 Appl. Microbiol. Biotechnol. 98 5387
    [7]
    Herrmann H W et al 1999 Phys. Plasmas 6 2284
    [8]
    Lai W et al 2005 Phys. Plasmas 12 023501
    [9]
    Tu V J et al 2000 J. Vac. Sci. Technol. A 18 2799
    [10]
    Shao T et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1747
    [11]
    Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557
    [12]
    Lu X et al 2016 Phys. Rep. 630 1
    [13]
    Kong M G et al 2014 High Volt. Eng. 40 2956 (in Chinese)
    [14]
    Li H P et al 2007 Plasma Chem. Plasma Process. 27 529
    [15]
    Shi J J et al 2005 J. Appl. Phys. 97 023306
    [16]
    Moon S Y et al 2006 Phys. Plasmas 13 033502
    [17]
    Zhu X-M et al 2018 Dental Mater. J. 37 798
    [18]
    Zhu X-M et al 2018 Plasma Sci. Technol. 20 044010
    [19]
    Takemura Y et al 2009 IEEE Trans. Plasma Sci. 37 1604
    [20]
    Reuter S et al 2012 IEEE Trans. Plasma Sci. 40 2986
    [21]
    Nizard H et al 2015 J. Phys. D: Appl. Phys. 48 415204
    [22]
    Qaisrani M H et al 2016 Phys. Plasmas 23 063523
    [23]
    Darny T et al 2017 Plasma Sources Sci. Technol. 26 105001
    [24]
    Akman M A et al 2013 IEEE Trans. Plasma Sci. 41 839
    [25]
    Li G et al 2010 J. Appl. Phys. 107 103304
    [26]
    Dünnbier M et al 2013 J. Phys. D: Appl. Phys. 46 435203
    [27]
    Schmidt-Bleker A et al 2014 J. Phys. D: Appl. Phys. 47 145201
    [28]
    Winter J et al 2015 Plasma Sources Sci. Technol. 24 025015
    [29]
    Li J et al 2018 IEEE Trans. Plasma Sci. 46 2766
    [30]
    Walsh J L et al 2008 Appl. Phys. Lett. 93 111501
    [31]
    Lee H ? W et al 2015 J. Phys. D: Appl. Phys. 48 155203
    [32]
    Setsuhara Y et al 2015 IEEE Trans. Plasma Sci. 43 3821
    [33]
    Ge N et al 2011 IEEE Trans. Plasma Sci. 39 2884
    [34]
    Guo H et al 2016 Rev. Sci. Instrum. 87 033502
    [35]
    Rauf S et al 1999 J. Appl. Phys. 85 3460
    [36]
    Lee D et al 2005 IEEE Trans. Plasma Sci. 33 949
    [37]
    Sarani A et al 2010 Phys. Plasmas 17 063504
    [38]
    Yamada H et al 2016 J. Phys. D: Appl. Phys. 49 394001
    [39]
    Saeed A et al 2014 Plasma Sci. Technol. 16 460
    [40]
    Wang R et al 2015 J. Appl. Phys. 118 123303
    [41]
    Sublet A et al 2006 Plasma Sources Sci. Technol. 15 627
    [42]
    Golubovskii Y B et al 2003 J. Phys. D: Appl. Phys. 36 39
    [43]
    Pagnon D et al 1995 J. Phys. D: Appl. Phys. 28 1856
    [44]
    Blanco J et al 2009 Renew. Sustain. Energy Rev. 13 1437
    [45]
    Li H P et al 2018 Phys. Rep. 770-772 1
    [46]
    Li G et al 2008 Appl. Phys. Lett. 92 221504
    [47]
    Donnelly V M et al 2000 Appl. Phys. Lett. 77 2467
    [48]
    Laux C O 2002 www.specair-radiation.net
    [49]
    Belostotskiy S G et al 2010 J. Appl. Phys. 107 053305
    [50]
    Park H et al 2010 Curr. Appl. Phy. 10 1456
    [51]
    NIST Atomic Spectra Database https://nist.gov/pml/atomic- spectra-database

Catalog

    Article views (144) PDF downloads (338) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return