Advanced Search+
Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
Citation: Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18

Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes

Funds: This work was supported by the National Key R&D Program of China (Nos. 2017YFE0301900 and 2017YFE0301100), National Natural Science Foundation of China (No. 11675083), the Fundamental Research Funds for the Central Universities (Nos. DUT18ZD101 and DUT17LK38), and the Dalian Youth Science and Technology Project Support Program (No. 2015R01).
More Information
  • Received Date: December 11, 2018
  • The effects of externally applied resonant magnetic perturbation (RMP) on the locked mode of the neoclassical tearing mode (NTM) are numerically investigated by means of a set of reduced magnetohydrodynamic equations. It is found that, for a small bootstrap current fraction, three regimes, namely the slight suppression regime, the small locked island (SLI) regime and the big locked island (BLI) regime, are discovered with the increase of RMP strength. For a much higher bootstrap current fraction, however, a new oscillation regime appears instead of the SLI regime, although the other regimes still remain. The physical process in each regime is analyzed in detail based on the phase difference between the NTM and the RMP. Moreover, the critical values of the RMP in both SLI and BLI regimes are obtained, and their dependence on key plasma parameters is discussed as well.
  • [1]
    ITER 1999 Nucl. Fusion 39 2137
    [2]
    Hender T C et al 2007 Nucl. Fusion 47 S128
    [3]
    Maraschek M 2012 Nucl. Fusion 52 074007
    [4]
    Gorelenkov N N et al 1996 Phys. Plasmas 3 3379
    [5]
    Wang W et al 2018 Plasma Sci. Technol. 20 075101
    [6]
    Zohm H 1996 Plasma Phys. Control. Fusion 38 105
    [7]
    Zhao N et al 2018 Plasma Sci. Technol. 20 024007
    [8]
    Evans T E et al 2006 Nat. Phys. 2 419
    [9]
    Cai H S et al 2018 Nucl. Fusion 58 036008
    [10]
    Wei L and Wang Z X 2014 Nucl. Fusion 54 043015
    [11]
    Yang S X et al 2018 Nucl. Fusion 58 046016
    [12]
    Han M K et al 2017 Nucl. Fusion 57 046019
    [13]
    Chen W et al 2010 Nucl. Fusion 50 084008
    [14]
    Kikuchi M and Azumi M 2012 Rev. Mod. Phys. 84 1807
    [15]
    La Haye R J et al 2000 Phys. Plasmas 7 3349
    [16]
    Gao X et al 2015 Plasma Sci. Technol. 17 448
    [17]
    Gong X Z et al 2017 Plasma Sci. Technol. 19 032001
    [18]
    Sun Y W et al 2016 Phys. Rev. Lett. 117 115001
    [19]
    Nishimura S et al 2010 Plasma Fusion Res. 5 040
    [20]
    Hu Q M and Yu Q Q 2016 Nucl. Fusion 56 034001
    [21]
    Wang J L, Wang Z X and Wei L 2015 Phys. Plasmas 22 092122
    [22]
    Volpe F A et al 2015 Phys. Rev. Lett. 115 175002
    [23]
    Hender T C et al 1992 Nucl. Fusion 32 2091
    [24]
    Yu Q Q, Günter S and Lackner K 2000 Phys. Rev. Lett. 85 2949
    [25]
    Hu Q M et al 2012 Nucl. Fusion 52 083011
    [26]
    Hu Q M et al 2013 Phys. Plasmas 20 092502
    [27]
    Yu Q Q, Günter S and Lackner K 2018 Nucl. Fusion 58 054003
    [28]
    Wang X G et al 2015 Nucl. Fusion 55 093024
    [29]
    Choi W et al 2018 Nucl. Fusion 58 036022
    [30]
    Nave M F F and Wesson J A 1990 Nucl. Fusion 30 2575
    [31]
    Yu Q Q et al 2008 Nucl. Fusion 48 065004
    [32]
    Yu Q Q et al 2008 Nucl. Fusion 48 024007
    [33]
    Sun Y W et al 2010 Plasma Phys. Control. Fusion 52 105007
    [34]
    Fitzpatrick R 2015 Phys. Plasmas 22 042514
    [35]
    Fitzpatrick R 2003 Phys. Plasmas 10 1782
    [36]
    Fitzpatrick R 1998 Phys. Plasmas 5 3325
    [37]
    Hazeltine R D, Kotschenreuther M and Morrison P J 1985 Phys. Fluids 28 2466
    [38]
    Strauss H R 1976 Phys. Fluids 19 134
    [39]
    Yu Q Q and Günter S 1998 Phys. Plasmas 5 3924
    [40]
    Liu T et al 2018 Nucl. Fusion 58 076026
    [41]
    Ishii Y, Azumi M and Kishimoto Y 2002 Phys. Rev. Lett. 89 205002
    [42]
    Bierwage A et al 2005 Phys. Rev. Lett. 94 065001
    [43]
    Wang Z X et al 2015 Nucl. Fusion 55 043005
    [44]
    Wei L et al 2016 Nucl. Fusion 56 106015
    [45]
    Wang J L et al 2017 Nucl. Fusion 57 046007
    [46]
    Sato M and Wakatani M 2005 Nucl. Fusion 45 143
  • Cited by

    Periodical cited type(12)

    1. Kim, E.-J., Thiruthummal, A.A. Probabilistic theory of the L-H transition and causality. Plasma Physics and Controlled Fusion, 2025, 67(2): 025025. DOI:10.1088/1361-6587/adab1c
    2. Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910
    3. Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3
    4. Tang, W., Luan, Q., Sun, H. et al. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model. Plasma Science and Technology, 2023, 25(4): 045103. DOI:10.1088/2058-6272/aca372
    5. Liu, T., Li, H., Tang, W. et al. Intelligent control for predicting and mitigating major disruptions in magnetic confinement fusion. iEnergy, 2022, 1(2): 153-157. DOI:10.23919/IEN.2022.0022
    6. Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b
    7. Wang, Z., Tang, W., Wei, L. A brief review: Effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks. Plasma Science and Technology, 2022, 24(3): 033001. DOI:10.1088/2058-6272/ac4692
    8. Lu, S.S., Ma, Z.W., Tang, W. et al. Numerical study on nonlinear double tearing mode in ITER. Nuclear Fusion, 2021, 61(12): 126065. DOI:10.1088/1741-4326/ac3022
    9. Lu, S.-S., Liu, Y., Wei, L. Numerical simulation of neoclassical tearing modes induced by resonant magnetic perturbations in tokamak plasmas. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109656
    10. Lu, S.S., Ma, Z.W., Zhang, H.W. et al. Locking effects of error fields on a tearing mode in tokamak. Plasma Physics and Controlled Fusion, 2020, 62(12): 125005. DOI:10.1088/1361-6587/abbcc4
    11. Nelson, A.O., Logan, N.C., Choi, W. et al. Experimental evidence of electron-cyclotron current drive-based neoclassical tearing mode suppression threshold reduction during mode locking on DIII-D. Plasma Physics and Controlled Fusion, 2020, 62(9): 094002. DOI:10.1088/1361-6587/ab9b3b
    12. Tang, W., Wang, Z.-X., Wei, L. et al. Control of neoclassical tearing mode by synergetic effects of resonant magnetic perturbation and electron cyclotron current drive in reversed magnetic shear tokamak plasmas. Nuclear Fusion, 2020, 60(2): 026015. DOI:10.1088/1741-4326/ab61d5

    Other cited types(0)

Catalog

    Article views (184) PDF downloads (135) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return