Advanced Search+
Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63
Citation: Liang HAN (韩亮), Jun GAO (高俊), Tao CHEN (陈涛), Yuntian CONG (丛云天), Zongliang LI (李宗良). A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect[J]. Plasma Science and Technology, 2019, 21(8): 85502-085502. DOI: 10.1088/2058-6272/ab0f63

A method to measure the in situ magnetic field in a Hall thruster based on the Faraday rotation effect

Funds: The authors would like to acknowledge the support of National Natural Science Foundation of China (No. 51807006).
More Information
  • Received Date: December 20, 2018
  • Revised Date: March 10, 2019
  • Accepted Date: March 11, 2019
  • This paper presents a method to measure the in situ magnetic field in a Hall thruster by optical non-invasive means, based on the optical Faraday rotation effect. This method does not affect the discharge of the thruster. Furthermore, its time resolution depends on the speed of the photodetector, and measurement at a MHz scale can be achieved.
  • [1]
    Duan P et al 2012 Plasma Sci. Technol. 14 837
    [2]
    Li H et al 2018 Plasma Sci. Technol. 20 125504
    [3]
    Wei L Q et al 2018 Plasma Sources Sci. Technol. 27 084002
    [4]
    Ding Y J et al 2018 IEEE Trans. Plasma Sci. 46 263
    [5]
    Miyasaka T, Shibata Y and Asato K 2008 Vacuum 83 61
    [6]
    Peterson P Y, Gallimore A D and Haas J M 2002 Phys. Plasmas 9 4354
    [7]
    Han L et al 2017 AIP Adv. 7 015008
    [8]
    Wei L Q et al 2018 Plasma Sci. Technol. 20 075502
    [9]
    Singh S et al 2013 Phys. Plasmas 20 102109
    [10]
    Wei L Q et al 2009 Plasma Sources Sci. Technol. 18 045020
    [11]
    Wei L Q et al 2017 Eur. Phys. J. Plus 132 452
    [12]
    Litvak A A, Raitses Y and Fisch N J 2004 Phys. Plasmas 11 1701
    [13]
    Litvak A A and Fisch N J 2004 Phys. Plasmas 11 1379
    [14]
    Adam J C, Héron A and Laval G 2004 Phys. Plasmas 11 295
    [15]
    Thomas C A and Cappelli M A 2005 Gradient transport processes in ExB plasmas Proc. 41st AIAA/ASME/SAE/ ASEE Joint Propulsion Conf. & Exhibit (Tucson, AZ: AIAA) 2005 (https://doi.org/10.2514/6.2005-4063)
    [16]
    Michael J S 2014 Plasma oscillations and operational modes in Hall effect thrusters PhD Thesis University of Michigan, Ann Arbor, MI USA
    [17]
    Piejak R, Godyak V and Alexandrovich B 1997 J. Appl. Phys. 81 3416
    [18]
    Huang W S, Ngom B B and Gallimore A D 2009 Using nonlinear Zeeman spectroscopy to obtain in situ magnetic field measurement in a Hall thruster Proc. 31st Int. Electric Propulsion Conf. (Ann Arbor, MI USA: IEPC)
    [19]
    Mullins C R et al 2017 Rev. Sci. Instrum. 88 013507
    [20]
    Foot C J 2005 Atomic Physics (Oxford: Oxford University Press)
    [21]
    Zhang J et al 2003 Acta Opt. Sin. 23 197 (in Chinese)
    [22]
    Qiu S Q et al 2012 Chin. Opt. Lett. 10 052701
    [23]
    Cao M et al 2012 Acta Phys. Sin. 61 164208
    [24]
    Qi Y R et al 2010 Chin. Opt. Lett. 8 1
  • Related Articles

    [1]Hui LIU (刘辉), Xiang NIU (牛翔), Huan WU (伍环), Daren YU (于达仁). Simulation study of the influence of leak electrons on the discharge characteristics of a cusped field thruster[J]. Plasma Science and Technology, 2019, 21(4): 45502-045502. DOI: 10.1088/2058-6272/aaf674
    [2]Le YANG (杨乐), Tianping ZHANG (张天平), Juanjuan CHEN (陈娟娟), Yanhui JIA (贾艳辉). Numerical study of low-frequency discharge oscillations in a 5 kW Hall thruster[J]. Plasma Science and Technology, 2018, 20(7): 75503-075503. DOI: 10.1088/2058-6272/aac012
    [3]Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7
    [4]Xinjing CAI (蔡新景), Xinxin WANG (王新新), Xiaobing ZOU (邹晓兵). Electron relaxation properties of Ar magnetron plasmas[J]. Plasma Science and Technology, 2018, 20(3): 35405-035405. DOI: 10.1088/2058-6272/aaa3d6
    [5]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [6]DUAN Ping (段萍), BIAN Xingyu (边兴宇), CAO Anning (曹安宁), LIU Guangrui (刘广睿), CHEN Long (陈龙), YIN Yan (殷燕). Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster[J]. Plasma Science and Technology, 2016, 18(5): 525-530. DOI: 10.1088/1009-0630/18/5/14
    [7]DUAN Ping (段萍), LIU Guangrui (刘广睿), BIAN Xingyu (边兴宇), CHEN Long (陈龙), YIN Yan (殷燕), CAO Anning (曹安宁). Effect of the Discharge Voltage on the Performance of the Hall Thruster[J]. Plasma Science and Technology, 2016, 18(4): 382-387. DOI: 10.1088/1009-0630/18/4/09
    [8]CAO Lihua(曹莉华), WANG Huan(王欢), ZHANG Hua(张华), LIU Zhanjun(刘占军), WU Junfeng(吴俊峰), LI Baiwen(李百文). Two-Dimensional Hybrid Model for High-Current Electron Beam Transport in a Dense Plasma[J]. Plasma Science and Technology, 2014, 16(11): 1007-1012. DOI: 10.1088/1009-0630/16/11/03
    [9]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [10]DUAN Ping(段萍), LI Xi (李肸), SHEN Hongjuan (沈鸿娟), CHEN Long (陈龙), E Peng (鄂鹏). Characteristics of a Sheath with Secondary Electron Emission in the Double Walls of a Hall Thruster[J]. Plasma Science and Technology, 2012, 14(9): 837-841. DOI: 10.1088/1009-0630/14/9/12
  • Cited by

    Periodical cited type(2)

    1. Da Valle, M., Dancheva, Y., Khanbekyan, A. et al. Laser-induced fluorescence spectroscopy on neutrals for plasma studies in Hall thrusters. Journal of Electric Propulsion, 2025, 4(1): 23. DOI:10.1007/s44205-025-00125-1
    2. Li, N., Liu, Y., Liu, C. et al. Fluid simulation on effect of background magnetic field on plasma characteristics in a Hall thruster. AIP Advances, 2022, 12(7): 075114. DOI:10.1063/5.0096156

    Other cited types(0)

Catalog

    Article views (182) PDF downloads (137) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return