Advanced Search+
Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
Citation: Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035

Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source

Funds: The work was supported by National Natural Science Foundation of China (No. 11475038).
More Information
  • Received Date: October 21, 2018
  • The effects of driving frequency on plasma parameters and electron heating efficiency are studied in cylindrical inductively coupled plasma (ICP) source. Measurements are made in an Ar discharge for driving frequency at 13.56/2 MHz, and pressures of 0.4–1.2 Pa. In 13.56 MHz discharge, higher electron density (ne) and higher electron temperature (Te) are observed in comparison with 2 MHz discharge at 0.6–1.2 Pa. However, slightly higher ne and Te are observed in 2 MHz discharge at 0.4 Pa. This observation is explained by enhanced electron heating efficiency due to the resonance between the oscillation of 2 MHz electromagnetic field and electron-neutral collision process at 0.4 Pa. It is also found that the variation of Te distribution is different in 13.56 and 2 MHz discharge. For ICP at 13.56 MHz, Te shows an edge-high profile at 0.4–1.2 Pa. For 2 MHz discharge, Te remains an edge-high distribution at 0.4–0.8 Pa. However, the distribution pattern involves into a center-high profile at 0.9–1.2 Pa. The spatial profiles of ne remain a center-high shape in both 13.56 and 2 MHz discharges, which indicates the nonlocal kinetics at low pressures. Better uniformity could be achieved by using 2 MHz discharge. The effects of gas pressure on plasma parameters are also examined. An increase in gas pressure necessitates the rise of ne in both 13.56 and 2 MHz discharges. Meanwhile, Te drops when gas pressure increases and shows a flatter distribution at higher pressure.
  • [1]
    Hopwood J 1992 Plasma Sources Sci. Technol. 1 109
    [2]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley Interscience)
    [3]
    Ventzek P L G, Grapperhaus M and Kushner M J 1994 J. Vac. Sci. Technol. B 12 3118
    [4]
    Helmersson U et al 2006 Thin Solid Films 513 1
    [5]
    Nakagawa H et al 1999 J. Vac. Sci. Technol. A 17 1514
    [6]
    Li W P et al 2008 J. Appl. Phys. 104 083306
    [7]
    Lee S H et al 2014 J. Phys. D: Appl. Phys. 47 015205
    [8]
    Kim Y D, Lee H C and Chung C W 2013 Phys. Plasmas 20 093508
    [9]
    Xu S et al 2001 Phys. Plasmas 8 2549
    [10]
    Mishra A et al 2012 Plasma Sources Sci. Technol. 21 035018
    [11]
    Ostrikov K N, Xu S and Yu M Y 2000 J. Appl. Phys. 88 2268
    [12]
    Shimada M, Tynan G R and Cattolica R 2008 J. Appl. Phys. 103 033304
    [13]
    Gweon G H et al 2010 Vacuum 84 823
    [14]
    Kim K N et al 2006 Appl. Phys. Lett. 89 251501
    [15]
    Toshihiko T et al 1996 Japan. J. Appl. Phys. 35 2356
    [16]
    Gao F et al 2018 Phys. Plasmas 25 013515
    [17]
    Charles C 2009 J. Phys. D: Appl. Phys. 42 163001
    [18]
    Qi X L et al 2008 Plasma Sci. Technol. 10 319
    [19]
    Mao M, Dai Z L and Wang Y N 2007 Plasma Sci. Technol. 9 30
    [20]
    Yang W et al 2016 Phys. Plasmas 23 123517
    [21]
    Ding Z F et al 2008 Phys. Plasmas 15 063506
    [22]
    Dai F F and Wu C H 1997 IEEE Trans. Plasma Sci. 25 1373
    [23]
    Ding Z F, Sun B and Huo W G 2015 Phys. Plasmas 22 063504
    [24]
    Lee H C 2018 Appl. Phys. Rev. 5 011108
    [25]
    Kudryavtsev A A and Serditov K Y 2012 Phys. Plasmas 19 073504
    [26]
    Kim J Y et al 2018 New J. Phys. 20 063033
    [27]
    Jiang X Z et al 2011 J. Vac. Sci. Technol. A 29 011006
    [28]
    Kortshagen U, Busch C and Tsendin L D 1996 Plasma Sources Sci. Technol. 5 1
    [29]
    Vahedi V et al 1995 J. Appl. Phys. 78 1446
    [30]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (New York: Cambridge University Press)
    [31]
    Kim J Y et al 2014 Phys. Plasmas 21 113505
    [32]
    Tsendin L D 1995 Plasma Sources Sci. Technol. 4 200
    [33]
    Godyak V A 2006 IEEE Trans. Plasma Sci. 34 755
    [34]
    Kim J Y et al 2016 Phys. Plasmas 23 023511
    [35]
    Takahashi K et al 2018 Phys. Rev. Lett. 120 045001
    [36]
    Kaganovich I D, Kolobov V I and Tsendin L D 1996 Appl. Phys. Lett. 69 3818
    [37]
    Wang J et al 2014 Phys. Plasmas 21 073502
    [38]
    Lee M H and Chung C W 2005 Appl. Phys. Lett. 87 131502
    [39]
    Lee M H, Jang S H and Chung C W 2006 Phys. Plasmas 13 053502
    [40]
    Godyak V A, Piejak R B and Alexandrovich B M 2002 Plasma Sources Sci. Technol. 11 525
    [41]
    Seo S H et al 2000 Phys. Rev. E 62 7155 9
  • Cited by

    Periodical cited type(5)

    1. Fu, C., Dong, Y., Li, Y. et al. Kinetic simulations of low-pressure inductively coupled plasma: an implicit electromagnetic PIC/MCC model with the ADI-FDTD method. Journal of Physics D: Applied Physics, 2024, 57(13): 135201. DOI:10.1088/1361-6463/ad1729
    2. Jiang, W., Wei, L., Yang, X. et al. Influence of matching network and frequency on the effective quality factor and performance of a miniature radio frequency ion thruster. Journal of Applied Physics, 2023, 134(3): 033301. DOI:10.1063/5.0147744
    3. Fayazi, H., Lashak, A.B., Pahlavani, M.R.A. Numerical and Experimental Investigation of the Effects of Dimensional Parameters on Carbon-Nanotube-Coated Copper Plasma Limiter. IEEE Transactions on Plasma Science, 2022, 50(5): 1246-1254. DOI:10.1109/TPS.2022.3163200
    4. Li, F., Luo, H., Du, J. et al. Pressure Sensor Based on Direct Current Discharge Plasma | [基于直流辉光放电等离子体的气体压力传感器]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36(15): 3163-3171. DOI:10.19595/j.cnki.1000-6753.tces.201611
    5. Hao, Z., Hua, Y., Song, J. et al. Effects of aspect ratio on electron loss mechanisms and plasma uniformity in cylindrical inductively coupled plasma. Physics of Plasmas, 2020, 27(4): 043502. DOI:10.1063/1.5143099

    Other cited types(0)

Catalog

    Article views (140) PDF downloads (171) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return