Advanced Search+
Yuhui ZHANG (张雨晖), Wenjun NING (宁文军), Dong DAI (戴栋), Qiao WANG (王乔). Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(7): 74003-074003. DOI: 10.1088/2058-6272/ab10a7
Citation: Yuhui ZHANG (张雨晖), Wenjun NING (宁文军), Dong DAI (戴栋), Qiao WANG (王乔). Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(7): 74003-074003. DOI: 10.1088/2058-6272/ab10a7

Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure

Funds: This work is supported by National Natural Science Foundation of China (Grant No. 51877086).
More Information
  • Received Date: November 14, 2018
  • In this paper, a two-dimensional axisymmetric fluid model was established to investigate the influence of nitrogen impurity content on the discharge pattern and the relevant discharge characteristics in an atmosphere pressure helium dielectric barrier discharge (DBD). The results indicated that when the nitrogen content was increased from 1 to 100 ppm, the discharge pattern evolved from a concentric-ring pattern into a uniform pattern, and then returned to the concentricring pattern. In this process, the discharge mode at the current peak moment transformed from glow mode into Townsend mode, and then returned to glow mode. Further analyses revealed that with the increase of impurity level, the rate of Penning ionization at the pre-ionization stage increased at first and decreased afterwards, resulting in a similar evolution pattern of seed electron level. This evolution trend was believed to be resulted from the competition between the N2 partial pressure and the consumption rate of metastable species. Moreover, the discharge uniformity was found positively correlated with the spatial uniformity of seed electron density as well as the seed electron level. The reason for this correlation was explained by the reduction of radial electric field strength and the promotion of seed electron uniformity as pre-ionization level increases. The results obtained in this work may help better understand the pattern formation mechanism of atmospheric helium DBD under the variation of N2 impurity level, thereby providing a possible means of regulating the discharge performance in practical application scenarios.
  • [1]
    Mohapatro S and Allamsetty S 2017 High Volt. 2 69
    [2]
    Xiao Z H et al 2017 Plasma Sci. Technol. 19 064009
    [3]
    Jiang B et al 2014 Chem. Eng. J. 236 348
    [4]
    Qiu Y et al 2018 Spectrochim. Acta B 149 48
    [5]
    Babaeva N Y, Tian W and Kushner M J 2014 J. Phys. D: Appl. Phys. 47 235201
    [6]
    Cheng H et al 2016 High Volt. 1 62
    [7]
    Zhang B et al 2017 Plasma Sci. Technol. 19 064001
    [8]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [9]
    Dai D, Ning W J and Shao T 2017 Trans. China Electrotech. Soc. 32 1 (in Chinese)
    [10]
    Ma Y F et al 2016 Proc. CSEE 36 1731 (in Chinese)
    [11]
    Shao T et al 2014 Appl. Phys. Lett. 105 071607
    [12]
    Shao T et al 2018 High Volt. 3 14
    [13]
    Lagmich Y et al 2008 J. Phys. D: Appl. Phys. 41 095205
    [14]
    Gao G Q et al 2017 Plasma Sci. Technol. 19 064010
    [15]
    Fridman A, Chirokov A and Gutsol A 2005 J. Phys. D: Appl. Phys. 38 R1
    [16]
    Bruggeman P and Brandenburg R 2013 J. Phys. D: Appl. Phys. 46 464001
    [17]
    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001
    [18]
    Liu F et al 2017 Plasma Sci. Technol. 19 064008
    [19]
    Ran J X, Luo H Y and Wang X X 2011 J. Phys. D: Appl. Phys. 44 335203
    [20]
    Luo H Y et al 2007 Appl. Phys. Lett. 91 221504
    [21]
    Ning W J et al 2017 Phys. Plasmas 24 073509
    [22]
    Duan X X, He F and Ouyang J T 2012 Plasma Sources Sci. Technol. 21 015008
    [23]
    Luo H Y et al 2008 J. Phys. D: Appl. Phys. 41 205205
    [24]
    Gherardi N and Massines F 2001 IEEE Trans. Plasma Sci. 29 536
    [25]
    Dong L F et al 2007 Phys. Rev. E 76 046210
    [26]
    Stollenwerk L et al 2006 Phys. Rev. Lett. 96 255001
    [27]
    Gurevich E L et al 2003 Phys. Rev. Lett. 91 154501
    [28]
    Callegari T, Bernecker B and Boeuf J P 2014 Plasma Sources Sci. Technol. 23 054003
    [29]
    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002
    [30]
    Jiang W M et al 2015 Sci. Rep. 5 16391
    [31]
    Boeuf J P et al 2012 Appl. Phys. Lett. 100 244108
    [32]
    Ouyang J T et al 2018 Plasma Sci. Technol. 20 103002
    [33]
    Cheung P Y, Donovan S and Wong A Y 1988 Phys. Rev. Lett. 61 1360
    [34]
    Glendinning P 1994 Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations (Cambridge: Cambridge University Press)
    [35]
    Dong L F et al 2005 Phys. Rev. E 72 046215
    [36]
    Zhang P and Kortshagen U 2006 J. Phys. D: Appl. Phys. 39 153
    [37]
    Hao Y P, Zheng B and Liu Y G 2012 High Volt. Eng. 38 1568 (in Chinese)
    [38]
    Huang Z M et al 2017 Phys. Plasmas 24 113506
    [39]
    Dong L F et al 2006 Plasma Sources Sci. Technol. 15 840
    [40]
    Dong L F et al 2006 Phys. Rev. E 74 057202
    [41]
    Brauer I et al 1999 J. Appl. Phys. 85 7569
    [42]
    Martens T et al 2008 Appl. Phys. Lett. 92 041504
    [43]
    Lazarou C et al 2016 Plasma Sources Sci. Technol. 25 055023
    [44]
    Li X W, Zhao H and Murphy A B 2018 J. Phys. D: Appl. Phys. 51 153001
    [45]
    Ning W J et al 2018 J. Phys. D: Appl. Phys. 51 125204
    [46]
    Wang L J et al 2017 Proc. CSEE 37 2816 (in Chinese)
    [47]
    Bibinov N K, Fateev A A and Wiesemann K 2001 J. Phys. D: Appl. Phys. 34 1819
    [48]
    Zhang Y H, Ning W J and Dai D 2018 AIP Adv. 8 035008
    [49]
    Huang Z et al 2015 Phys. Plasmas 22 123509
    [50]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (Hoboken, NJ: Wiley-Interscience)
    [51]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722
    [52]
    Purwins H G and Stollenwerk L 2014 Plasma Phys. Control. Fusion 56 123001
    [53]
    Lazarou C et al 2015 Plasma Sources Sci. Technol. 24 035012
    [54]
    Zhang Y H, Ning W J and Dai D 2019 J. Phys. D: Appl. Phys. 52 045203
    [55]
    2017 IST-Lisbon database https://lxcat.net/ (Accessed: July 21, 2017)
    [56]
    Deloche R et al 1976 Phys. Rev. A 13 1140
    [57]
    Golubovskii Y B et al 2003 J. Phys. D: Appl. Phys. 36 39
    [58]
    Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207
    [59]
    Stalder K R et al 2006 J. Appl. Phys. 99 093301
    [60]
    Plasma module of COMSOL Multiphysics http://comsol. com/plasma-module/
    [61]
    Yang A J et al 2014 Phys. Plasmas 21 073507
    [62]
    Breden D, Miki K and Raja L L 2012 Plasma Sources Sci. Technol. 21 034011
    [63]
    Hasan M I and Bradley J W 2015 J. Phys. D: Appl. Phys. 48 435201
    [64]
    Yan W et al 2017 J. Phys. D: Appl. Phys. 50 345201
    [65]
    Hagelaar G J M, de Hoog F J and Kroesen G M W 2000 Phys. Rev. E 62 1452
    [66]
    Motz H and Wise H 1960 J. Chem. Phys. 32 1893
    [67]
    Wang L J, Zheng Y S and Jia S L 2016 Phys. Plasmas 23 103504
    [68]
    Boeuf J P, Yang L L and Pitchford L C 2013 J. Phys. D: Appl. Phys. 46 015201
    [69]
    Petra C G et al 2014 SIAM J. Sci. Comput. 36 C139
    [70]
    Petra C G, Schenk O and Anitescu M 2014 Comput. Sci. Eng. 16 32
    [71]
    Hao Y P, Zheng B and Liu Y G 2014 Phys. Plasmas 21 013503
    [72]
    Massines F et al 1998 J. Appl. Phys. 83 2950
    [73]
    Mangolini L et al 2002 Appl. Phys. Lett. 80 1722
    [74]
    Bai Z G, Wang X F and Liu F C 2015 J. Phys. D: Appl. Phys. 48 345201
    [75]
    Yuan X H and Raja L L 2003 IEEE Trans. Plasma Sci. 31 495
    [76]
    Martens T et al 2010 Appl. Phys. Lett. 96 091501
    [77]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
    [78]
    Luo H Y et al 2010 J. Phys. D: Appl. Phys. 43 155201
    [79]
    Zhang D Z, Wang Y H and Wang D Z 2013 Phys. Plasmas 20 063504
    [80]
    Zhang Y H, Ning W J and Dai D 2019 IEEE Trans. Plasma Sci. 47 179
    [81]
    Gherardi N et al 2000 Plasma Sources Sci. Technol. 9 340
    [82]
    Xu S W et al 2013 Phys. Plasmas 20 083515
    [83]
    Zhang J, Wang Y H and Wang D Z 2015 Phys. Plasmas 22 043517
    [84]
    Zhang J, Wang Y H and Wang D Z 2015 Phys. Plasmas 22113510
  • Cited by

    Periodical cited type(20)

    1. Wang, L., Zhao, H., Han, Z. et al. Numerical simulation of He atmospheric pressure plasma jet impinging on the tilted dielectric surface. Journal of Applied Physics, 2024, 136(11): 113302. DOI:10.1063/5.0232639
    2. Yang, C., Geng, Y., Wang, J. EFFECT OF AIR IMPURITIES ON THE CHARACTERISTICS OF HELIUM DISCHARGE AT HIGH TEMPERATURE AND HIGH PRESSURE. 2024. DOI:10.1115/ICONE31-135193
    3. Fang, Z., Pan, Y.-Q., Dai, D. et al. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation | [基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(14): 145201. DOI:10.7498/aps.73.20240343
    4. Yang, D., Chen, J., Duan, Z. et al. Simulation analysis on microscopic discharge characteristics of the bipolar corona of a floating conductor. Plasma Science and Technology, 2023, 25(8): 085402. DOI:10.1088/2058-6272/acc16e
    5. Liu, K., Fang, Z., Dai, D. Numerical study on uniformity of atmospheric helium gas dielectric barrier discharge on non-smooth surface regulated by sinusoidal clipping voltage | [正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(13): 135201. DOI:10.7498/aps.72.20230385
    6. Ning, W., Li, R., Shen, X. et al. Simulation of the Discharges in Millimetre Gap Driven by Radio-frequency and Kilohertz AC Voltages | [射 频 和 千 赫 兹 驱 动 的 毫 米 间 隙 放 电 的 仿 真 研 究]. Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2023, 55(4): 38-46. DOI:10.15961/j.jsuese.202200996
    7. Huo, W., Lin, J., Yu, T. et al. Numerical studies on the influences of gas temperature on atmospheric-pressure helium dielectric barrier discharge characteristics. Plasma Science and Technology, 2023, 25(5): 055402. DOI:10.1088/2058-6272/aca9a7
    8. Yang, C., Geng, Y., Wang, J. Influence of nitrogen impurities on the characteristics of helium discharge at high pressure. Annals of Nuclear Energy, 2022. DOI:10.1016/j.anucene.2022.109024
    9. Liu, F., Zhuang, Y., Zhao, Y. et al. Effects of O2addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies. Plasma Science and Technology, 2022, 24(5): 054004. DOI:10.1088/2058-6272/ac41c1
    10. Wang, S., Song, P., Pei, H. et al. Numerical Simulation and Experimental Study of Ar/CH4 Coaxial DBD Discharge Characteristics. Advances in Transdisciplinary Engineering, 2022. DOI:10.3233/ATDE220025
    11. Luo, B., Wang, J., Dai, D. et al. Partial discharge simulation of air gap defects in oil-paper insulation paperboard of converter transformer under different ratios of ac–dc combined voltage. Energies, 2021, 14(21): 6995. DOI:10.3390/en14216995
    12. Zhao, L., Ji, Y., Shang, H. et al. Propagation Mechanism of a Positive DC Driven Atmospheric Pressure Helium Plasma Jet: Influences of He-air Mixing Layer | [正极性直流驱动大气压氦气等离子体射流的传播机制: 氦气-空气混合层的影响]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(17): 6090-6099. DOI:10.13334/j.0258-8013.pcsee.202583
    13. Yang, C.-P., Geng, Y.-N., Wang, J. et al. Breakdown voltage of high pressure helium parallel plates and effect of field emission | [高气压氦气平行极板击穿电压及场致发射的影响]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(13): 135102. DOI:10.7498/aps.70.20210086
    14. Wang, Q., Zhou, X., Dai, D. et al. Nonlinear feature in the spatial uniformity of an atmospheric helium dielectric barrier discharge with the inter-dielectric gap width enlarged. Plasma Sources Science and Technology, 2021, 30(5): 05LT01. DOI:10.1088/1361-6595/abf75e
    15. Wang, Q., Dai, D., Ning, W. et al. Atmospheric dielectric barrier discharge containing helium-air mixtures: The effect of dry air impurities on the spatial discharge behavior. Journal of Physics D: Applied Physics, 2021, 54(11): 115203. DOI:10.1088/1361-6463/abcdd1
    16. LIU, Y., WANG, S., ZHOU, R. et al. Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics. Plasma Science and Technology, 2021, 23(6): 064008. DOI:10.1088/2058-6272/abed2e
    17. Huang, Z., Zhang, Y., Dai, D. et al. Controlling the number of discharge current pulses in an atmospheric dielectric barrier discharge by voltage waveform tailoring. AIP Advances, 2021, 11(1): 015203. DOI:10.1063/5.0033571
    18. Wang, Q., Ning, W., Dai, D. et al. How does the moderate wavy surface affect the discharge behavior in an atmospheric helium dielectric barrier discharge model?. Plasma Processes and Polymers, 2020, 17(2): 1900182. DOI:10.1002/ppap.201900182
    19. Luo, L., Huang, Z., Wang, Q. et al. Influence of oxygen on the multiple-current-pulse behavior in an atmospheric homogeneous helium dielectric barrier discharge with air impurities. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.2964653
    20. Liu, F., Guo, X., Zhou, Z. et al. Numerical simulations of the effects of the level of nitrogen impurities in atmospheric helium Townsend discharge. Physics of Plasmas, 2019, 26(12): 123502. DOI:10.1063/1.5125294

    Other cited types(0)

Catalog

    Article views (259) PDF downloads (259) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return