Citation: | Bing QI (齐冰), Chunxu QIN (秦春旭), Haikun SHANG (尚海昆), Li XIONG (熊莉). Measurement of He2* density with an auxiliary measuring electrode in atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(8): 85402-085402. DOI: 10.1088/2058-6272/ab15a1 |
[1] |
Duriyasart F et al 2017 Chem. Commun. 53 6704
|
[2] |
Fanelli F and Fracassi F 2017 Surf. Coat. Technol. 322 174
|
[3] |
?antak V et al 2017 Plasma Chem. Plasma Process. 37 401
|
[4] |
Nishime T M C et al 2017 Surf. Coat. Technol. 312 19
|
[5] |
Stallard C P et al 2016 Plasma Process. Polym. 13 241
|
[6] |
Massines F et al 1998 J. Appl. Phys. 83 2950
|
[7] |
Golubovskii Y B et al 2003 J. Phys. D: Appl. Phys. 36 39
|
[8] |
Kong M G and Deng X T 2003 IEEE Trans. Plasma Sci. 31 7
|
[9] |
Schweer B et al 1992 J. Nucl. Mater. 196-8 174
|
[10] |
Kajita S et al 2006 Phys. Plasmas 13 013301
|
[11] |
Nishijima D and Hollmann E M 2007 Plasma Phys. Control. Fusion 49 791
|
[12] |
Iida Y et al 2010 Rev. Sci. Instrum. 81 10E511
|
[13] |
Kajita S et al 2017 Phys. Plasmas 24 073301
|
[14] |
Cao Z et al 2009 Appl. Phys. Lett. 94 021501
|
[15] |
Cao Z et al 2010 Plasma Sources Sci. Technol. 19 025003
|
[16] |
Kim J Y and Kim S O 2011 IEEE Trans. Plasma Sci. 39 2278
|
[17] |
Nie Q Y et al 2009 New J. Phys. 11 115015
|
[18] |
Teschke M et al 2005 IEEE Trans. Plasma Sci. 33 310
|
[19] |
Lu X P et al 2008 Appl. Phys. Lett. 92 081502
|
[20] |
Boeuf J P et al 2013 J. Phys. D: Appl. Phys. 46 015201
|
[21] |
Li Q et al 2009 Appl. Phys. Lett. 95 141502
|
[22] |
Wang Y H and Wang D Z 2004 Chin. Phys. Lett. 21 2234
|
[23] |
Yan W et al 2014 Phys. Plasmas 21 063505
|
[24] |
Tachibana K et al 2005 J. Appl. Phys. 97 123301
|
[25] |
Nersisyan G et al 2004 Appl. Phys. Lett. 85 1487
|
[26] |
Li Q et al 2014 IEEE Trans. Plasma Sci. 42 2360
|
[27] |
Park G et al 2008 Plasma Process. Polym. 5 569
|
[28] |
Martens T et al 2008 Appl. Phys. Lett. 92 041504
|
[29] |
Ward A L 1962 J. Appl. Phys. 33 2789 6
|
1. | Liu, G., Chen, C., Xia, Y. et al. Numerical study on the effect of shielding gas on atmospheric pressure plasma jet interacting with target surface. Physica Scripta, 2025, 100(4): 045609. DOI:10.1088/1402-4896/adc0ca |
2. | Xu, J., He, Q., Zhang, X. et al. Investigation into the role of Si and SiC phases in RB-SiC ceramics surface modified ultra-precision grinding. Materials Science in Semiconductor Processing, 2024. DOI:10.1016/j.mssp.2024.108786 |
3. | Jia, P., Wan, W., Zhang, L. et al. Numerical simulation on the behavior of a negative streamer encountered with a cloud of positive ions in atmospheric pressure plasma jet. AIP Advances, 2023, 13(6): 065005. DOI:10.1063/5.0155359 |
4. | Huo, W., Lin, J., Yu, T. et al. Numerical studies on the influences of gas temperature on atmospheric-pressure helium dielectric barrier discharge characteristics. Plasma Science and Technology, 2023, 25(5): 055402. DOI:10.1088/2058-6272/aca9a7 |
5. | Cui, X., Xu, Z., Zhou, Y. et al. Deposition of superhydrophobic film on cylindrical ceramic with atmospheric pressure plasma jet. Surface and Coatings Technology, 2022. DOI:10.1016/j.surfcoat.2022.129066 |
6. | Boudjadar, A., Bouanaka, F., Rebiaï, S. Physical phenomena of a cold plasma jet model at atmospheric pressure. Physica Scripta, 2022, 97(12): 125609. DOI:10.1088/1402-4896/aca2fb |