Advanced Search+
Bing QI (齐冰), Chunxu QIN (秦春旭), Haikun SHANG (尚海昆), Li XIONG (熊莉). Measurement of He2* density with an auxiliary measuring electrode in atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(8): 85402-085402. DOI: 10.1088/2058-6272/ab15a1
Citation: Bing QI (齐冰), Chunxu QIN (秦春旭), Haikun SHANG (尚海昆), Li XIONG (熊莉). Measurement of He2* density with an auxiliary measuring electrode in atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(8): 85402-085402. DOI: 10.1088/2058-6272/ab15a1

Measurement of He2* density with an auxiliary measuring electrode in atmospheric pressure plasma jet

Funds: This study is supported by National Natural Science Foundation of China (No. 11105093).
More Information
  • Received Date: March 06, 2019
  • Revised Date: March 24, 2019
  • Accepted Date: April 01, 2019
  • In this study, the density of metastable He2* in an atmospheric-pressure plasma jet operating in helium with 0.001% nitrogen has been measured using an auxiliary measuring electrode technique. In the glow discharge mode, waveforms from two grounding electrodes, including one main discharge electrode and one auxiliary electrode, are captured. The isolated current peak formed by Penning ionization in waveforms from the auxiliary measuring electrode is identified to calculate the density of metastable He2*. In our discharge environment, the helium metastable densities along the jet axis direction are between 2.26 × 1013 and 1.74 × 1013 cm-3, which is in good agreement with the results measured by other techniques. This measurement technique can be conveniently applied to the diagnosis of metastable He2* in an atmospheric-pressure plasma jet array.
  • [1]
    Duriyasart F et al 2017 Chem. Commun. 53 6704
    [2]
    Fanelli F and Fracassi F 2017 Surf. Coat. Technol. 322 174
    [3]
    ?antak V et al 2017 Plasma Chem. Plasma Process. 37 401
    [4]
    Nishime T M C et al 2017 Surf. Coat. Technol. 312 19
    [5]
    Stallard C P et al 2016 Plasma Process. Polym. 13 241
    [6]
    Massines F et al 1998 J. Appl. Phys. 83 2950
    [7]
    Golubovskii Y B et al 2003 J. Phys. D: Appl. Phys. 36 39
    [8]
    Kong M G and Deng X T 2003 IEEE Trans. Plasma Sci. 31 7
    [9]
    Schweer B et al 1992 J. Nucl. Mater. 196-8 174
    [10]
    Kajita S et al 2006 Phys. Plasmas 13 013301
    [11]
    Nishijima D and Hollmann E M 2007 Plasma Phys. Control. Fusion 49 791
    [12]
    Iida Y et al 2010 Rev. Sci. Instrum. 81 10E511
    [13]
    Kajita S et al 2017 Phys. Plasmas 24 073301
    [14]
    Cao Z et al 2009 Appl. Phys. Lett. 94 021501
    [15]
    Cao Z et al 2010 Plasma Sources Sci. Technol. 19 025003
    [16]
    Kim J Y and Kim S O 2011 IEEE Trans. Plasma Sci. 39 2278
    [17]
    Nie Q Y et al 2009 New J. Phys. 11 115015
    [18]
    Teschke M et al 2005 IEEE Trans. Plasma Sci. 33 310
    [19]
    Lu X P et al 2008 Appl. Phys. Lett. 92 081502
    [20]
    Boeuf J P et al 2013 J. Phys. D: Appl. Phys. 46 015201
    [21]
    Li Q et al 2009 Appl. Phys. Lett. 95 141502
    [22]
    Wang Y H and Wang D Z 2004 Chin. Phys. Lett. 21 2234
    [23]
    Yan W et al 2014 Phys. Plasmas 21 063505
    [24]
    Tachibana K et al 2005 J. Appl. Phys. 97 123301
    [25]
    Nersisyan G et al 2004 Appl. Phys. Lett. 85 1487
    [26]
    Li Q et al 2014 IEEE Trans. Plasma Sci. 42 2360
    [27]
    Park G et al 2008 Plasma Process. Polym. 5 569
    [28]
    Martens T et al 2008 Appl. Phys. Lett. 92 041504
    [29]
    Ward A L 1962 J. Appl. Phys. 33 2789 6
  • Cited by

    Periodical cited type(6)

    1. Liu, G., Chen, C., Xia, Y. et al. Numerical study on the effect of shielding gas on atmospheric pressure plasma jet interacting with target surface. Physica Scripta, 2025, 100(4): 045609. DOI:10.1088/1402-4896/adc0ca
    2. Xu, J., He, Q., Zhang, X. et al. Investigation into the role of Si and SiC phases in RB-SiC ceramics surface modified ultra-precision grinding. Materials Science in Semiconductor Processing, 2024. DOI:10.1016/j.mssp.2024.108786
    3. Jia, P., Wan, W., Zhang, L. et al. Numerical simulation on the behavior of a negative streamer encountered with a cloud of positive ions in atmospheric pressure plasma jet. AIP Advances, 2023, 13(6): 065005. DOI:10.1063/5.0155359
    4. Huo, W., Lin, J., Yu, T. et al. Numerical studies on the influences of gas temperature on atmospheric-pressure helium dielectric barrier discharge characteristics. Plasma Science and Technology, 2023, 25(5): 055402. DOI:10.1088/2058-6272/aca9a7
    5. Cui, X., Xu, Z., Zhou, Y. et al. Deposition of superhydrophobic film on cylindrical ceramic with atmospheric pressure plasma jet. Surface and Coatings Technology, 2022. DOI:10.1016/j.surfcoat.2022.129066
    6. Boudjadar, A., Bouanaka, F., Rebiaï, S. Physical phenomena of a cold plasma jet model at atmospheric pressure. Physica Scripta, 2022, 97(12): 125609. DOI:10.1088/1402-4896/aca2fb

    Other cited types(0)

Catalog

    Article views (192) PDF downloads (113) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return