Citation: | Zhongxi NING (宁中喜), Yanfeng CHU (初彦峰), Xiaoyu LIU (刘晓宇), Fan LI (李凡), Ximing ZHU (朱悉铭), Daren YU (于达仁). Effect of vacuum backpressure on discharge characteristics of hollow cathode[J]. Plasma Science and Technology, 2019, 21(12): 125402. DOI: 10.1088/2058-6272/ab4364 |
[1] |
Mazouffre M 2016 Plasma Sources Sci. Technol. 25 033002
|
[2] |
Ning Z X et al 2009 Plasma Sources Sci. Technol. 11 194
|
[3] |
Walker M L R and Gallimore A D 2007 J. Propulsion Power 23 35
|
[4] |
Goebel D M, Watkins R M and Jameson K K 2007 J. Propulsion Power 23 552
|
[5] |
Goebel D and Chu E 2012 High current lanthanum hexaboride hollow cathode for 20-to-100 kW class hall thrusters Proc.48th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Atlanta, GA: AIAA)
|
[6] |
Vekselman V et al 2013 J. Propulsion Power 29 475
|
[7] |
Rocca J J et al 1984 J. Appl. Phys. 56 790
|
[8] |
Korolev Y D et al 2007 IEEE Trans. Plasma Sci. 35 1651
|
[9] |
Oks E M, Vizir A V and Yushkov G Y 1998 Rev. Sci. Instrum. 69 853
|
[10] |
Schoenbach K H et al 1997 Plasma Sources Sci. Technol. 6 468
|
[11] |
Koshelev N N and Loyan A V 2007 Investigation of hollow cathode for low power Hall effect thruster Proc. 30th Int.Electric Propulsion Conf. (Florence: IEPC)
|
[12] |
Jameson K K, Goebel D M and Watkins R M 2005 Hollow cathode and keeper-region plasma measurements Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Tucson, AZ: AIAA)
|
[13] |
Pedrini D et al 2016 Hollow cathodes development at Sitael Proc. Space Propulsion 2016 (Rome: SP)
|
[14] |
Daykin-Iliopoulos A, Golosnoy I and Gabriel S 2017 Thermal profile of a lanthanum hexaboride heaterless hollow cathode Proc. 35th Int. Electric Propulsion Conf. (Atlanta,GA: IEPC)
|
[15] |
Goebel D M and Chu E 2013 J. Propulsion Power 30 35
|
[16] |
Fu Y Y et al 2017 Phys. Plasmas 24 083516
|
[17] |
Fu Y Y, Verboncoeur J P and Christlieb A J 2017 Phys.Plasmas 24 103514
|
[18] |
Diamant K D 2010 A 2-stage cylindrical hall thruster for air breathing electric propulsion Proc. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Nashville,TN: AIAA)
|
[19] |
Jacchia L G 1971 Revised static models of the thermosphere and exosphere with empircial temperature profiles SAO Special Report #332 Smithsonian Astrophysical Observatory
|
[20] |
Hegeler F et al 1993 Experimental investigation of the early phase of dielectric surface flashover in a simulated low EAR Proc. 9th IEEE Int. Pulsed Power Conf. (Albuquerque, NM)(Piscataway, NJ: IEEE)
|
[21] |
Diamant K D, Liang R and Corey R L 2014 The effect of background pressure on SPT-100 Hall thruster performance Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf.(Cleveland, OH: AIAA )
|
[22] |
Walker M L R et al 2004 J. Propulsion Power 20 1127
|
[23] |
Boyd I D 2001 J. Spacecr. Rockets 38 381
|
[24] |
de Grys K H, Tilley D L and Aadland R S 1999 BPT Hall thruster plume characteristics Proc. 35th Joint Propulsion Conf. and Exhibit (Los Angeles, CA: AIAA)
|
[25] |
Tilley D L, de Grys K H and Myers R M 1999 Hall thrustercathode coupling Proc.35th Joint Propulsion Conf. and Exhibit (Los Angeles, CA: AIAA)
|
[26] |
Sankovic J M, Haag T W and Manzella D H 1994 Operating characteristics of the Russian D-55 thruster with anode layer Proc. 30th Joint Propulsion Conf. and Exhibit (Indianapolis,IN: AIAA)
|
[27] |
Randolph T et al 1993 Facility effects on stationary plasma thruster testing Proc. 23rd Int. Electric Propulsion Conf.(Seattle, WA: IEPC)
|
[28] |
Boyd I D and Dressler R A 2002 J. Appl. Phys. 92 1764
|
[29] |
Walker M L R et al 2005 J. Propulsion Power 21 408
|
[30] |
Nakles M R and Hargus W A 2011 J. Propulsion Power 27 737
|
[31] |
Walker M L R, Hofer R R and Gallimore A D 2006 J. Propulsion Power 22 205
|
[32] |
Walker M L R, Hofer R R and Gallimore A D 2002 The effects of nude Faraday probe design and vacuum facility backpressure on the measured ion current density profile of Hall thruster plumes Proc. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Indianapolis, IN: AIAA)
|
[33] |
Walker M L R 2005 Effects of facility backpressure on the performance and plume of a Hall thruster PhD Thesis University of Michigan
|
[34] |
Bugrova A I and Morozov A I 1996 Plasma Phys. Rep. 22 632
|
[35] |
Gallagher H E 1969 J. Appl. Phys. 40 44
|
[36] |
Goebel D M and Polk J E 2015 Lanthanum hexaboride hollow cathode for the asteroid redirect robotic mission 12.5 kW Hall thruster Proc. 34th Int. Electric Propulsion Conf.(Hyogo-Kobe: IEPC)
|
[37] |
Dodson C et al 2016 Laser-induced fluorescence measurements of energetic Ions in a 100-A LaB6 hollow cathode plume Proc. 52nd AIAA/SAE/ASEE Joint Propulsion Conf. (Salt Lake City, UI: AIAA)
|
[38] |
Kamhawi H et al 2014 Investigation of the effects of facility background pressure on the performance and operation of the high voltage Hall accelerator Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Cleveland, OH: AIAA)
|
[39] |
Albertoni R et al 2013 Preliminary characterization of a LaB6 hollow cathode for low-power Hall effect thrusters Proc.33rd Int. Electric Propulsion Conf. (Washington, DC: IEPC)
|
[40] |
Goebel D M et al 2007 Phys. Plasmas 14 103508
|
[41] |
Domonkos M T et al 1999 Low-current hollow cathode evaluation Proc. 35th Joint Propulsion Conf. and Exhibit (Los Angeles, CA: AIAA)
|
[42] |
Joussot R, Grimaud L and Mazouffre S 2017 Vacuum 146 52
|
[43] |
Goebel D M et al 2007 Plasma potential behavior and plume mode transitions in hollow cathode discharges Proc. 30th Int. Electric Propulsion Conf. (Florence: IEPC) 2007
|
[44] |
Mikellides I G et al 2007 Partially-Ionized gas and associated wear in electron sources for ion propulsion: II. Discharge hollow cathode Proc. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Cincinnati, OH: AIAA) 2007
|
[45] |
Walker M L R and Gallimore A D 2007 J. Propulsion Power 23 528
|
[46] |
Jorns B A, Mikellides I G and Goebel D M 2014 Phys. Rev. E 90 063106
|
[47] |
El-Habachi A and Schoenbach K H 1998 Appl. Phys. Lett.73 885
|
[48] |
Chu E, Goebel D M and Wirz R E 2013 J. Propulsion Power 29 1155
|
[49] |
Csiky G A 1969 Measurements of some properties of a discharge from a hollow cathode NASA Technical Note D-49669 NASA
|
[50] |
Potrivitu G C, Joussot R and Mazouffre S 2018 Vacuum 151 122
|
[51] |
Kameyama I 1997 Effects of neutral density on energetic ions produced near high-current hollow cathodes PhD Thesis Colorado State University, Colorado
|
[52] |
Jorns B A, Goebel D M and Mikellides I G 2014 Investigation of energetic ions in a 100-a hollow cathode Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Cleveland, OH: AIAA)
|
[53] |
Jorns B A et al 2015 Mitigation of energetic ions and keeper erosion in a high-current hollow cathode Proc. 34th Int. Electric Propulsion Conf. (Hyogo-Kobe: IEPC)
|
1. | Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045 | |
2. | Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931 | |
3. | Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667 | |
4. | Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866 | |
5. | Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3 | |
6. | Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c | |
7. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56 | |
8. | Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582 | |
9. | Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927 | |
10. | Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696 | |
11. | Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002 | |
12. | Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716 | |
13. | Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274 | |
14. | Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984 | |
15. | Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622 | |
16. | Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb | |
17. | Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844 | |
18. | Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292 | |
19. | Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562 | |
20. | Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433 | |
21. | Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502 | |
22. | Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111 | |
23. | Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c |