Advanced Search+
Zhongxi NING (宁中喜), Yanfeng CHU (初彦峰), Xiaoyu LIU (刘晓宇), Fan LI (李凡), Ximing ZHU (朱悉铭), Daren YU (于达仁). Effect of vacuum backpressure on discharge characteristics of hollow cathode[J]. Plasma Science and Technology, 2019, 21(12): 125402. DOI: 10.1088/2058-6272/ab4364
Citation: Zhongxi NING (宁中喜), Yanfeng CHU (初彦峰), Xiaoyu LIU (刘晓宇), Fan LI (李凡), Ximing ZHU (朱悉铭), Daren YU (于达仁). Effect of vacuum backpressure on discharge characteristics of hollow cathode[J]. Plasma Science and Technology, 2019, 21(12): 125402. DOI: 10.1088/2058-6272/ab4364

Effect of vacuum backpressure on discharge characteristics of hollow cathode

Funds: This work is supported by National Natural Science Foundation of China (Nos. 61571166, 11775063, and 51736003).
More Information
  • Received Date: June 02, 2019
  • Revised Date: September 09, 2019
  • Accepted Date: September 10, 2019
  • A hollow cathode is the electronic source and neutralizer of the Hall thruster and an ion thruster. When the orbit of an all-electric propulsion satellite changes from 100 km to 36 000 km, the backpressure changes by two to three orders of magnitude. In this paper, the influence of the backpressure on the discharge characteristics of the hollow cathode has been studied experimentally in the so-called diode configuration. With the increase in the backpressure, the anode voltage decreases gradually, and the amplitude of the current oscillation decreases significantly. Additionally, the plasma is relatively stable, the most probable ion energy and the width of the ion energy distribution reduces, and the electron distribution function inclines toward the Maxwell distribution under high backpressure. The analysis results show that the backpressure affects the gas ionization and the ionic acoustic turbulence, which also affects the discharge characteristics of the hollow cathode.
  • [1]
    Mazouffre M 2016 Plasma Sources Sci. Technol. 25 033002
    [2]
    Ning Z X et al 2009 Plasma Sources Sci. Technol. 11 194
    [3]
    Walker M L R and Gallimore A D 2007 J. Propulsion Power 23 35
    [4]
    Goebel D M, Watkins R M and Jameson K K 2007 J. Propulsion Power 23 552
    [5]
    Goebel D and Chu E 2012 High current lanthanum hexaboride hollow cathode for 20-to-100 kW class hall thrusters Proc.48th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Atlanta, GA: AIAA)
    [6]
    Vekselman V et al 2013 J. Propulsion Power 29 475
    [7]
    Rocca J J et al 1984 J. Appl. Phys. 56 790
    [8]
    Korolev Y D et al 2007 IEEE Trans. Plasma Sci. 35 1651
    [9]
    Oks E M, Vizir A V and Yushkov G Y 1998 Rev. Sci. Instrum. 69 853
    [10]
    Schoenbach K H et al 1997 Plasma Sources Sci. Technol. 6 468
    [11]
    Koshelev N N and Loyan A V 2007 Investigation of hollow cathode for low power Hall effect thruster Proc. 30th Int.Electric Propulsion Conf. (Florence: IEPC)
    [12]
    Jameson K K, Goebel D M and Watkins R M 2005 Hollow cathode and keeper-region plasma measurements Proc. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Tucson, AZ: AIAA)
    [13]
    Pedrini D et al 2016 Hollow cathodes development at Sitael Proc. Space Propulsion 2016 (Rome: SP)
    [14]
    Daykin-Iliopoulos A, Golosnoy I and Gabriel S 2017 Thermal profile of a lanthanum hexaboride heaterless hollow cathode Proc. 35th Int. Electric Propulsion Conf. (Atlanta,GA: IEPC)
    [15]
    Goebel D M and Chu E 2013 J. Propulsion Power 30 35
    [16]
    Fu Y Y et al 2017 Phys. Plasmas 24 083516
    [17]
    Fu Y Y, Verboncoeur J P and Christlieb A J 2017 Phys.Plasmas 24 103514
    [18]
    Diamant K D 2010 A 2-stage cylindrical hall thruster for air breathing electric propulsion Proc. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Nashville,TN: AIAA)
    [19]
    Jacchia L G 1971 Revised static models of the thermosphere and exosphere with empircial temperature profiles SAO Special Report #332 Smithsonian Astrophysical Observatory
    [20]
    Hegeler F et al 1993 Experimental investigation of the early phase of dielectric surface flashover in a simulated low EAR Proc. 9th IEEE Int. Pulsed Power Conf. (Albuquerque, NM)(Piscataway, NJ: IEEE)
    [21]
    Diamant K D, Liang R and Corey R L 2014 The effect of background pressure on SPT-100 Hall thruster performance Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf.(Cleveland, OH: AIAA )
    [22]
    Walker M L R et al 2004 J. Propulsion Power 20 1127
    [23]
    Boyd I D 2001 J. Spacecr. Rockets 38 381
    [24]
    de Grys K H, Tilley D L and Aadland R S 1999 BPT Hall thruster plume characteristics Proc. 35th Joint Propulsion Conf. and Exhibit (Los Angeles, CA: AIAA)
    [25]
    Tilley D L, de Grys K H and Myers R M 1999 Hall thrustercathode coupling Proc.35th Joint Propulsion Conf. and Exhibit (Los Angeles, CA: AIAA)
    [26]
    Sankovic J M, Haag T W and Manzella D H 1994 Operating characteristics of the Russian D-55 thruster with anode layer Proc. 30th Joint Propulsion Conf. and Exhibit (Indianapolis,IN: AIAA)
    [27]
    Randolph T et al 1993 Facility effects on stationary plasma thruster testing Proc. 23rd Int. Electric Propulsion Conf.(Seattle, WA: IEPC)
    [28]
    Boyd I D and Dressler R A 2002 J. Appl. Phys. 92 1764
    [29]
    Walker M L R et al 2005 J. Propulsion Power 21 408
    [30]
    Nakles M R and Hargus W A 2011 J. Propulsion Power 27 737
    [31]
    Walker M L R, Hofer R R and Gallimore A D 2006 J. Propulsion Power 22 205
    [32]
    Walker M L R, Hofer R R and Gallimore A D 2002 The effects of nude Faraday probe design and vacuum facility backpressure on the measured ion current density profile of Hall thruster plumes Proc. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Indianapolis, IN: AIAA)
    [33]
    Walker M L R 2005 Effects of facility backpressure on the performance and plume of a Hall thruster PhD Thesis University of Michigan
    [34]
    Bugrova A I and Morozov A I 1996 Plasma Phys. Rep. 22 632
    [35]
    Gallagher H E 1969 J. Appl. Phys. 40 44
    [36]
    Goebel D M and Polk J E 2015 Lanthanum hexaboride hollow cathode for the asteroid redirect robotic mission 12.5 kW Hall thruster Proc. 34th Int. Electric Propulsion Conf.(Hyogo-Kobe: IEPC)
    [37]
    Dodson C et al 2016 Laser-induced fluorescence measurements of energetic Ions in a 100-A LaB6 hollow cathode plume Proc. 52nd AIAA/SAE/ASEE Joint Propulsion Conf. (Salt Lake City, UI: AIAA)
    [38]
    Kamhawi H et al 2014 Investigation of the effects of facility background pressure on the performance and operation of the high voltage Hall accelerator Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Cleveland, OH: AIAA)
    [39]
    Albertoni R et al 2013 Preliminary characterization of a LaB6 hollow cathode for low-power Hall effect thrusters Proc.33rd Int. Electric Propulsion Conf. (Washington, DC: IEPC)
    [40]
    Goebel D M et al 2007 Phys. Plasmas 14 103508
    [41]
    Domonkos M T et al 1999 Low-current hollow cathode evaluation Proc. 35th Joint Propulsion Conf. and Exhibit (Los Angeles, CA: AIAA)
    [42]
    Joussot R, Grimaud L and Mazouffre S 2017 Vacuum 146 52
    [43]
    Goebel D M et al 2007 Plasma potential behavior and plume mode transitions in hollow cathode discharges Proc. 30th Int. Electric Propulsion Conf. (Florence: IEPC) 2007
    [44]
    Mikellides I G et al 2007 Partially-Ionized gas and associated wear in electron sources for ion propulsion: II. Discharge hollow cathode Proc. 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Cincinnati, OH: AIAA) 2007
    [45]
    Walker M L R and Gallimore A D 2007 J. Propulsion Power 23 528
    [46]
    Jorns B A, Mikellides I G and Goebel D M 2014 Phys. Rev. E 90 063106
    [47]
    El-Habachi A and Schoenbach K H 1998 Appl. Phys. Lett.73 885
    [48]
    Chu E, Goebel D M and Wirz R E 2013 J. Propulsion Power 29 1155
    [49]
    Csiky G A 1969 Measurements of some properties of a discharge from a hollow cathode NASA Technical Note D-49669 NASA
    [50]
    Potrivitu G C, Joussot R and Mazouffre S 2018 Vacuum 151 122
    [51]
    Kameyama I 1997 Effects of neutral density on energetic ions produced near high-current hollow cathodes PhD Thesis Colorado State University, Colorado
    [52]
    Jorns B A, Goebel D M and Mikellides I G 2014 Investigation of energetic ions in a 100-a hollow cathode Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Cleveland, OH: AIAA)
    [53]
    Jorns B A et al 2015 Mitigation of energetic ions and keeper erosion in a high-current hollow cathode Proc. 34th Int. Electric Propulsion Conf. (Hyogo-Kobe: IEPC)
  • Cited by

    Periodical cited type(23)

    1. Gao, X., Deng, Y., Wei, Z. et al. Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling. Journal of Environmental Chemical Engineering, 2025, 13(2): 116045. DOI:10.1016/j.jece.2025.116045
    2. Qu, M., Zheng, Y., Cheng, Z. et al. Mechanism of chlorobenzene removal in biotrickling filter enhanced by non-thermal plasma: Insights from biodiversity and functional gene perspectives. Bioresource Technology, 2025. DOI:10.1016/j.biortech.2024.131931
    3. Zang, X., Sun, H., Wang, W. et al. Plasma-catalytic removal of toluene over bimetallic M/Mn-BTC catalysts in dielectric barrier discharge reactor. Separation and Purification Technology, 2024. DOI:10.1016/j.seppur.2023.125667
    4. Zhang, W., Xing, Y., Hao, L. et al. Effect of gas components on the degradation mechanism of o-dichlorobenzene by non-thermal plasma technology with single dielectric barrier discharge. Chemosphere, 2023. DOI:10.1016/j.chemosphere.2023.139866
    5. Zhang, L., Zou, Z., Lei, Z. et al. Research on the Mechanism of Synergistic Treatment of VOCs–O3 by Low Temperature Plasma Catalysis Technology. Plasma Chemistry and Plasma Processing, 2023, 43(6): 1651-1672. DOI:10.1007/s11090-023-10366-3
    6. Tao, Y., Xu, Y., Chang, K. et al. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO. Plasma Science and Technology, 2023, 25(8): 085504. DOI:10.1088/2058-6272/acc14c
    7. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma coupled with catalyst: influence of catalyst, interaction between plasma and catalyst. Plasma Science and Technology, 2023, 25(5): 055506. DOI:10.1088/2058-6272/acae56
    8. Huang, H., He, L., Wang, Y. et al. Experimental study on toluene removal by a two-stage plasma-biofilter system. Plasma Science and Technology, 2022, 24(12): 124011. DOI:10.1088/2058-6272/aca582
    9. Shi, X., Liang, W., Yin, G. et al. Effect of the factors on the mixture of toluene and chlorobenzene degradation by non-thermal plasma. Journal of Environmental Chemical Engineering, 2022, 10(6): 108927. DOI:10.1016/j.jece.2022.108927
    10. Shi, X., Liang, W., Yin, G. et al. Degradation of chlorobenzene by non-thermal plasma with Mn based catalyst | [低温等离子体协同 Mn 基催化剂降解氯苯研究]. Huagong Xuebao/CIESC Journal, 2022, 73(10): 4472-4483. DOI:10.11949/0438-1157.20220696
    11. Zhu, X., Xiong, H., Liu, J. et al. Plasma-enhanced catalytic oxidation of ethylene oxide over Fe–Mn based ternary catalysts. Journal of the Energy Institute, 2022. DOI:10.1016/j.joei.2022.06.002
    12. Zhu, X., Wu, X., Liu, J. et al. Soot Oxidation over γ-Al2O3-Supported Manganese-Based Binary Catalyst in a Dielectric Barrier Discharge Reactor. Catalysts, 2022, 12(7): 716. DOI:10.3390/catal12070716
    13. Yu, X., Dang, X., Li, S. et al. Abatement of chlorobenzene by plasma catalysis: Parameters optimization through response surface methodology (RSM), degradation mechanism and PCDD/Fs formation. Chemosphere, 2022. DOI:10.1016/j.chemosphere.2022.134274
    14. Gu, J., Shen, X., Liang, X. et al. Research on the removal of H2S using dielectric barrier discharge combined with photocatalysis and the fate of sulfur in the reaction. Chemical Engineering and Processing - Process Intensification, 2022. DOI:10.1016/j.cep.2022.108984
    15. Li, Y., Lv, J., Xu, Q. et al. Study of the Treatment of Organic Waste Gas Containing Benzene by a Low Temperature Plasma-Biological Degradation Method. Atmosphere, 2022, 13(4): 622. DOI:10.3390/atmos13040622
    16. Chang, T., Ma, C., Nikiforov, A. et al. Plasma degradation of trichloroethylene: Process optimization and reaction mechanism analysis. Journal of Physics D: Applied Physics, 2022, 55(12): 125202. DOI:10.1088/1361-6463/ac40bb
    17. Lin, Q., Peng, H., Xie, W. et al. Evaluation catalytic performance of Ag/TiO2 in dielectric barrier discharge plasma. Vacuum, 2022. DOI:10.1016/j.vacuum.2021.110844
    18. Xie, L., Lu, J., Ye, G. et al. Decomposition of gaseous chlorobenzene using a DBD combined CuO/α-Fe2O3 catalysis system. Environmental Technology (United Kingdom), 2022, 43(18): 2743-2754. DOI:10.1080/09593330.2021.1899292
    19. Li, S., Yu, X., Dang, X. et al. Non-thermal plasma coupled with MOx/γ-Al2O3 (M: Fe, Co, Mn, Ce) for chlorobenzene degradation: Analysis of byproducts and the reaction mechanism. Journal of Environmental Chemical Engineering, 2021, 9(6): 106562. DOI:10.1016/j.jece.2021.106562
    20. Jin, X., Wang, G., Lian, L. et al. Chlorobenzene removal using dbd coupled with cuo/γ-al2 o3 catalyst. Applied Sciences (Switzerland), 2021, 11(14): 6433. DOI:10.3390/app11146433
    21. Zhou, W., Ye, Z., Nikiforov, A. et al. The influence of relative humidity on double dielectric barrier discharge plasma for chlorobenzene removal. Journal of Cleaner Production, 2021. DOI:10.1016/j.jclepro.2020.125502
    22. Zhao, Y., Ye, K., Zhuang, Y. et al. Progress of manganese catalysts for non-thermal plasma catalysis on VOCs degradation. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2020, 39(S2): 175-184. DOI:10.16085/j.issn.1000-6613.2020-1111
    23. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (151) PDF downloads (180) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return