Advanced Search+
Yunxi SHI (施蕴曦), Yixi CAI (蔡忆昔), Xiaohua LI (李小华), Xiaoyu PU (濮晓宇), Nan ZHAO (赵楠), Weikai WANG (王为凯). Effect of the amount of trapped particulate matter on diesel particulate filter regeneration performance using nonthermal plasma assisted by exhaust waste heat[J]. Plasma Science and Technology, 2020, 22(1): 15504-015504. DOI: 10.1088/2058-6272/ab4d3c
Citation: Yunxi SHI (施蕴曦), Yixi CAI (蔡忆昔), Xiaohua LI (李小华), Xiaoyu PU (濮晓宇), Nan ZHAO (赵楠), Weikai WANG (王为凯). Effect of the amount of trapped particulate matter on diesel particulate filter regeneration performance using nonthermal plasma assisted by exhaust waste heat[J]. Plasma Science and Technology, 2020, 22(1): 15504-015504. DOI: 10.1088/2058-6272/ab4d3c

Effect of the amount of trapped particulate matter on diesel particulate filter regeneration performance using nonthermal plasma assisted by exhaust waste heat

Funds: This work is currently supported by National Natural Science Foundation of China (Nos. 51806085, 51676089), China Postdoctoral Science Foundation (No. 2018M642175), Jiangsu Planned Projects for Postdoctoral Research Fund (No. 2018K101C) and Jiangsu University Youth Talent Cultivation Program Funded Project.
More Information
  • Received Date: July 30, 2019
  • Revised Date: October 10, 2019
  • Accepted Date: October 11, 2019
  • An experimental system of diesel particulate filter (DPF) regeneration using non-thermal plasma (NTP) technology assisted by exhaust waste heat was conducted and regeneration experiments of DPFs with different amounts of trapped particulate matter (PM) were conducted. The concentrations of the PM decomposition products (COx) and the internal temperature of the DPF were monitored to determine the performance of DPF regeneration and thermal safety of the NTP technology. The results showed that the concentrations of CO and CO2 and the mass of PM decomposition increased with the increase in the amount of captured PM, whereas the concentration of the NTP active substance (O3) escaping from the DPF decreased under the same working conditions of the NTP injection system. A higher amount of captured PM promoted the oxidative decomposition reaction between NTP and PM and improved the utilization rate of the NTP active substances. The peak temperature at the same measuring point inside the DPF generally increased and the phases of the peak temperature were delayed as the amount of captured PM increased. The temperature peaks and temperature gradients during the DPF regeneration process were far lower than the failure limit value, which indicates that NTP regeneration technology has good thermal durability and increases the service life of the DPF.
  • [1]
    Zhang B et al 2017 Appl. Therm. Eng. 121 838
    [2]
    Fang J et al 2017 Appl. Therm. Eng. 124 633
    [3]
    Feng X Y et al 2014 Res. Environ. Sci. 27 36 (in Chinese)
    [4]
    Gu L B et al 2017 Plasma Sci. Technol. 19 115503
    [5]
    E J Q et al 2016 Appl. Therm. Eng. 100 356
    [6]
    Chen K, Martirosyan K and Luss D 2010 Ind. Eng. Chem. Res.49 10358
    [7]
    Bai S Z et al 2017 Appl. Therm. Eng. 119 297
    [8]
    Palma V et al 2015 Fuel 140 50
    [9]
    Lou D M et al 2013 Adv. Mater. Res. 726–731 2234
    [10]
    Mohapatro S and Rajanikanth B S 2011 Plasma Sci. Technol.13 82
    [11]
    Ma C C et al 2016 Appl. Therm. Eng. 99 1110
    [12]
    Fushimi C et al 2008 Plasma Chem. Plasma Process. 28 511
    [13]
    Wang P et al 2015 Appl. Therm. Eng. 91 1
    [14]
    Lin H et al 2007 Proc. Combust. Inst. 31 3335
    [15]
    Yao S et al 2006 Plasma Chem. Plasma Process. 26 481
    [16]
    Yao S L et al 2007 AIChE J. 53 1891
    [17]
    Yao S L et al 2010 Asia-Pac. J. Chem. Eng. 5 701
    [18]
    Okubo M et al 2007 Thin Solid Films 515 4289
    [19]
    Okubo M et al 2009 IEEE Trans. Ind. Appl. 45 1568
    [20]
    Okubo M et al 2010 Improvement of NOx reduction efficiency in diesel emission using nonthermal plasma—exhaust gas recirculation combined aftertreatment 2010 IEEE Industry Applications Society Annual Meeting Houston (Piscataway,NJ: IEEE)
    [21]
    Kuwahara T et al 2015 Ozone: Sci. Eng. 37 518
    [22]
    Kuwahara T et al 2013 Appl. Energy 111 652
    [23]
    Shi Y X et al 2014 Int. J. Autom. Technol. 15 871
    [24]
    Shi Y X et al 2017 Plasma Chem. Plasma Process. 37 451
    [25]
    Shi Y X et al 2016 Plasma Chem. Plasma Process. 36 783
    [26]
    Pu X Y et al 2018 Int. J. Autom. Technol. 19 421
    [27]
    Koudriavtsev O et al 2002 IEEE Trans. Ind. Appl. 38 369
    [28]
    Takaki K, Chang J S and Kostov K G 2004 IEEE Trans.Dielectr. Electr. Insul. 11 481
    [29]
    Yagi S and Tanaka M 1979 J. Phys. D: Appl. Phys. 12 1509
    [30]
    Kogelschatz U, Eliasson B and Hirth M 1988 Ozone: Sci. Eng.10 367
    [31]
    Yusop A F et al 2013 Procedia Eng. 53 530
    [32]
    Tan P Q et al 2007 Energy Convers. Manage. 48 510
    [33]
    Okubo M et al 2008 Plasma Chem. Plasma Process. 28 173
    [34]
    Grundmann J, Mülle S and Zahn R J 2005 Plasma Chem.Plasma Process. 25 455
    [35]
    Shi Y X 2017 Study on mechanism and influence factors ofDPF low temperature regeneration based on non-thermalplasma technology PhD Thesis Jiangsu University, Zhenjiang, China (in Chinese)
    [36]
    Shi Y X et al 2015 J. Eng. Thermophys. 36 2754 (in Chinese)
    [37]
    Chen K, Martirosyan K S and Luss D 2011 Chem. Eng. J.176–177 144
    [38]
    Papitha R et al 2014 Int. J. Appl. Ceram. Technol. 11 773
  • Related Articles

    [1]Heng LAN, Tonghui SHI, Ning YAN, Xueqin LI, Shi LI, Ran CHEN, Moyi DUAN, Guanghai HU, Lunan LIU, Wei ZHANG, Ming CHEN, Yuanyang ZHENG, Zhong YUAN, Yong WANG, Zhanghou XU, Liqing XU, Pengfei ZI, Liang CHEN, Shaocheng LIU, Donggui WU, Genfan DING, Lingyi MENG, Zhengchu WANG, Qing ZANG, Muquan WU, Xiang ZHU, Baolong HAO, Xiaodong LIN, Xiang GAO, Liang WANG, Guosheng XU. A new electromagnetic probe array diagnostic for analyzing electrostatic and magnetic fluctuations in EAST plasmas[J]. Plasma Science and Technology, 2023, 25(7): 075105. DOI: 10.1088/2058-6272/acbef5
    [2]Qinghu YANG, Zhipeng CHEN, Zhigang HAO, Yangming ZHAO, Xin XU, Shuhao LI, Jie YANG, Wei YAN, Zhonghe JIANG, Zhongyong CHEN, Nengchao WANG, Zhoujun YANG, Yuan PAN, Yonghua DING, the J-TEXT Team. Design and first result of combined Langmuir-magnetic probe on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(5): 054005. DOI: 10.1088/2058-6272/ac41bf
    [3]Zhihui HUANG, Jun CHENG, Na WU, Longwen YAN, Hongbing XU, Weice WANG, Xianggan MIAO, Kaiyang YI, Jianqiang XU, Laizhong CAI, Zhongbing SHI, Jiaqi DONG, Yi LIU, Wulyu ZHONG, Qingwei YANG, Min XU, Xuru DUAN. Upgrade of an integrated Langmuir probe system on the closed divertor target plates in the HL-2A tokamak[J]. Plasma Science and Technology, 2022, 24(5): 054002. DOI: 10.1088/2058-6272/ac496c
    [4]Qi WANG (汪启), Qingquan YANG (杨清泉), Zhengmao SHENG (盛正卯), Guosheng XU (徐国盛), Jinping QIAN (钱金平), Ning YAN (颜宁), Yifeng WANG (王一丰), Heng ZHANG (张恒). Dependence of the internal inductance on the radial distance between the primary and secondary X-point surfaces in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105101. DOI: 10.1088/2058-6272/aad326
    [5]Zhijun WANG (王智君), Xiang GAO (高翔), Tingfeng MING (明廷凤), Yumin WANG (王嵎民), Fan ZHOU (周凡), Feifei LONG (龙飞飞), Qing ZHUANG (庄清), EAST Team. Two-dimensional vacuum ultraviolet images in different MHD events on the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(2): 25103-025103. DOI: 10.1088/2058-6272/aa9477
    [6]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
    [7]XU Ming (徐明), WEN Yizhi (闻一之), XIE Jinlin (谢锦林), YU Changxuan (俞昌旋), et al.. Internal Magnetic Configuration Measured by ECE Imaging on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(12): 1194-1196. DOI: 10.1088/1009-0630/15/12/05
    [8]HE Yinghua (何迎花), YU Yi (余羿), XU Xiaoyuan (徐小圆), WEN Yizhi (闻一之), et al.. A 57-Pin Langmuir Probe Array for Two-Dimensional Diagnosis in the Toroidal KT-5D Steady-State Plasma[J]. Plasma Science and Technology, 2013, 15(8): 738-744. DOI: 10.1088/1009-0630/15/8/04
    [9]FU Jia (符佳), LI Yingying (李颖颖), SHI Yuejiang (石跃江), WANG Fudi (王福地), ZHANG Wei (张伟), LV Bo (吕波), HUANG Juang (黄娟), WAN Baonian (万宝年), ZHOU Qian (周倩). Spectroscopic Measurements of Impurity Spectra on the EAST Tokamak[J]. Plasma Science and Technology, 2012, 14(12): 1048-1053. DOI: 10.1088/1009-0630/14/12/03
    [10]SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02

Catalog

    Article views (124) PDF downloads (111) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return