Citation: | Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82 |
[1] |
Massines F et al 1998 J. Appl. Phys. 83 2950
|
[2] |
Park J et al 2001 J. Appl. Phys. 89 20
|
[3] |
Fridman G et al 2008 Plasma Process Polym. 5 503
|
[4] |
Laroussi M 2005 Plasma Process Polym. 2 391
|
[5] |
Iza F et al 2008 Plasma Process Polym. 5 322
|
[6] |
He J et al 2013 Plasma Sources Sci. 22 035008
|
[7] |
Zhang Y T et al 2010 Appl. Phys. Lett. 97 141504
|
[8] |
Walsh J L et al 2008 Appl. Phys. Lett. 93 221505
|
[9] |
Xiong Q et al 2010 Phys. Plasmas 17 043506
|
[10] |
Laroussi M et al 2004 J. Appl. Phys. 96 3028
|
[11] |
Graves D B 2014 Phys. Plasmas 21 080901
|
[12] |
Zhang Y T and Wang Y H 2018 Phys. Plasmas 25 023509
|
[13] |
Lou J and Zhang Y T 2013 IEEE Tran. Plasma Sci. 41 274
|
[14] |
Zhang Y T and He J 2013 Phys. Plasmas 20 013502
|
[15] |
Balcon N, Hagelaar G J M and Boeuf J P 2008 IEEE Trans.Plasma Sci. 36 2782
|
[16] |
You S J et al 2003 J. Appl. Phys. 94 7422
|
[17] |
Schulze J et al 2011 Phys. Rev. Lett. 107 275001
|
[18] |
Wang X L, Liu Y and Zhang Y T 2017 IEEE Trans. Plasma Sci. 45 3147
|
[19] |
Sousa J S et al 2011 J. Appl. Phys. 109 123302
|
[20] |
Waskoenig J et al 2010 Plasma Sources Sci. Technol. 19 045018
|
[21] |
Zhang Y T, Chi Y Y and He J 2014 Plasma Process. Polym.11 639
|
[22] |
Huang X J et al 2011 Phys. Plasmas 18 033503
|
[23] |
Huo W G et al 2014 Phys. Plasmas 21 053505
|
[24] |
Hu J T et al 2012 Phys. Plasmas 19 063505
|
[25] |
Leins M et al 2014 Contrib. Plasma Phys. 54 14
|
[26] |
Zhang Y T, Liu Y and Liu B 2017 Plasma Sci. Technol. 19 085402
|
[27] |
Lee M U, Lee J K and Yun G S 2018 Plasma Process Polym.15 1700124
|
[28] |
Shi J J et al 2008 Appl. Phys. Lett. 93 041502
|
[29] |
Kwon H C et al 2014 Phys. Plasmas 21 033511
|
[30] |
Farouk T et al 2008 Plasma Sources Sci. Technol. 17 035015
|
[31] |
Yuan X H and Raja L L 2003 IEEE Trans. Plasmas Sci. 31 495
|
[32] |
Hübner S et al 2012 J. Phy. D: Appl. Phys. 45 055203
|
[33] |
Ashida S, Shim M R and Lieberman M A 1996 J. Vac. Sci.Technol. A 14 391
|
[34] |
Lieberman M A and Ashida S 1996 Plasma Sources Sci.Technol. 5 145
|
1. | Zhang, B., Ping, T., Mu, L. et al. Highly selective conversion of alkali lignin into aromatic monomers by pulse dielectric barrier discharge plasma at mild reaction conditions. Sustainable Materials and Technologies, 2023. DOI:10.1016/j.susmat.2023.e00643 | |
2. | Liu, Z.-B., Wang, X.-C., Zhang, Y.-T. Numerical Study on Kinetic Effects of Driving Frequency in Atmospheric Radio Frequency Discharges Using Deep Neural Network. IEEE Transactions on Plasma Science, 2023, 51(5): 1212-1222. DOI:10.1109/TPS.2023.3267733 | |
3. | Ai, F., Liu, Z.-B., Zhang, Y.-T. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning | [结合机器学习的大气压介质阻挡放电数值模拟研究]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(24): 245201. DOI:10.7498/aps.71.20221555 | |
4. | Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Comparing Study on Formation of Large Discharge Currents in Atmospheric Pulse-Modulated Radio Frequency Discharges. IEEE Transactions on Plasma Science, 2022, 50(9): 2796-2804. DOI:10.1109/TPS.2022.3188019 | |
5. | Wang, X., Gao, S., Zhang, Y. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium-oxygen admixtures. Plasma Science and Technology, 2022, 24(8): 085401. DOI:10.1088/2058-6272/ac67bf | |
6. | Gao, S.-H., Cheng, R.-G., Zhang, Y.-T. Numerical Study on Operation Optimization of Atmospheric Radio-Frequency Glow Discharges Modulated by Pulses. IEEE Transactions on Plasma Science, 2022, 50(3): 609-618. DOI:10.1109/TPS.2022.3147853 | |
7. | Gao, S.-H., Wang, X.-L., Zhang, Y.-T. Modeling study on the enhancement of atmospheric pulse-modulated radio-frequency discharge assisted by pulsed voltage. Physics of Plasmas, 2021, 28(11): 0061546. DOI:10.1063/5.0061546 | |
8. | ZHAO, P., CHANG, C., SHU, P. et al. Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air. Plasma Science and Technology, 2021, 23(8): 085003. DOI:10.1088/2058-6272/ac0688 | |
9. | Wang, X.-L., Gao, S.-H., Zhang, Y.-T. Numerical study on optimization of atmospheric pulse-modulated radio frequency discharges in the very high frequency range. Physics of Plasmas, 2021, 28(7): 073511. DOI:10.1063/5.0048966 | |
10. | Shen, J., Cheng, C., Xu, Z. et al. Principles and Characteristics of Cold Plasma at Gas Phase and Gas-Liquid Phase. Applications of Cold Plasma in Food Safety, 2021. DOI:10.1007/978-981-16-1827-7_1 | |
11. | Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers | [脉冲调制条件下介质阻挡特高频放电特性的数值模拟]. Wuli Xuebao/Acta Physica Sinica, 2020, 69(11): 115204. DOI:10.7498/aps.69.20191853 |