Advanced Search+
Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82
Citation: Guan WANG (王冠), Ye KUANG (匡野), Yuantao ZHANG (张远涛). Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma[J]. Plasma Science and Technology, 2020, 22(1): 15404-015404. DOI: 10.1088/2058-6272/ab4d82

Kinetic simulation of the transition from a pulse-modulation microwave discharge to a continuous plasma

Funds: This work was supported by National Science Foundation of China (Nos. 11675095 and 11975142).
More Information
  • Received Date: May 09, 2019
  • Revised Date: October 09, 2019
  • Accepted Date: October 13, 2019
  • The generation of a very strong peak current in the first period (PCFP) in a pulse-modulated microwave discharge has been discussed in previous studies. In this paper we focus on the transition process from a pulsed discharge to a fully continuous one driven by the pulsed microwave power source by means of a kinetic model. The computational results show that by increasing the duty cycle or voltage modulation rate (VMR), the discharge eventually becomes fully continuous and PCFP can no longer be observed. In the transition process, the distributions of the electric field, electron energy probability function (EEPF) and plasma density are discussed according to the simulation data, showing different discharge structures. The simulations indicate that many high-energy electrons with electron energy larger than 20 eV and low-energy electrons with electron energy less than 3 eV could be generated in a pulsed microwave discharge, together with a reversal electric field formed in the anode sheath when PCFP occurs. However, only medium-energy electrons could be observed in a fully continuous discharge. Therefore, by investigating the transition process the pulse-modulated microwave discharges can be further optimized for plasma applications at atmospheric pressure.
  • [1]
    Massines F et al 1998 J. Appl. Phys. 83 2950
    [2]
    Park J et al 2001 J. Appl. Phys. 89 20
    [3]
    Fridman G et al 2008 Plasma Process Polym. 5 503
    [4]
    Laroussi M 2005 Plasma Process Polym. 2 391
    [5]
    Iza F et al 2008 Plasma Process Polym. 5 322
    [6]
    He J et al 2013 Plasma Sources Sci. 22 035008
    [7]
    Zhang Y T et al 2010 Appl. Phys. Lett. 97 141504
    [8]
    Walsh J L et al 2008 Appl. Phys. Lett. 93 221505
    [9]
    Xiong Q et al 2010 Phys. Plasmas 17 043506
    [10]
    Laroussi M et al 2004 J. Appl. Phys. 96 3028
    [11]
    Graves D B 2014 Phys. Plasmas 21 080901
    [12]
    Zhang Y T and Wang Y H 2018 Phys. Plasmas 25 023509
    [13]
    Lou J and Zhang Y T 2013 IEEE Tran. Plasma Sci. 41 274
    [14]
    Zhang Y T and He J 2013 Phys. Plasmas 20 013502
    [15]
    Balcon N, Hagelaar G J M and Boeuf J P 2008 IEEE Trans.Plasma Sci. 36 2782
    [16]
    You S J et al 2003 J. Appl. Phys. 94 7422
    [17]
    Schulze J et al 2011 Phys. Rev. Lett. 107 275001
    [18]
    Wang X L, Liu Y and Zhang Y T 2017 IEEE Trans. Plasma Sci. 45 3147
    [19]
    Sousa J S et al 2011 J. Appl. Phys. 109 123302
    [20]
    Waskoenig J et al 2010 Plasma Sources Sci. Technol. 19 045018
    [21]
    Zhang Y T, Chi Y Y and He J 2014 Plasma Process. Polym.11 639
    [22]
    Huang X J et al 2011 Phys. Plasmas 18 033503
    [23]
    Huo W G et al 2014 Phys. Plasmas 21 053505
    [24]
    Hu J T et al 2012 Phys. Plasmas 19 063505
    [25]
    Leins M et al 2014 Contrib. Plasma Phys. 54 14
    [26]
    Zhang Y T, Liu Y and Liu B 2017 Plasma Sci. Technol. 19 085402
    [27]
    Lee M U, Lee J K and Yun G S 2018 Plasma Process Polym.15 1700124
    [28]
    Shi J J et al 2008 Appl. Phys. Lett. 93 041502
    [29]
    Kwon H C et al 2014 Phys. Plasmas 21 033511
    [30]
    Farouk T et al 2008 Plasma Sources Sci. Technol. 17 035015
    [31]
    Yuan X H and Raja L L 2003 IEEE Trans. Plasmas Sci. 31 495
    [32]
    Hübner S et al 2012 J. Phy. D: Appl. Phys. 45 055203
    [33]
    Ashida S, Shim M R and Lieberman M A 1996 J. Vac. Sci.Technol. A 14 391
    [34]
    Lieberman M A and Ashida S 1996 Plasma Sources Sci.Technol. 5 145
  • Cited by

    Periodical cited type(11)

    1. Zhang, B., Ping, T., Mu, L. et al. Highly selective conversion of alkali lignin into aromatic monomers by pulse dielectric barrier discharge plasma at mild reaction conditions. Sustainable Materials and Technologies, 2023. DOI:10.1016/j.susmat.2023.e00643
    2. Liu, Z.-B., Wang, X.-C., Zhang, Y.-T. Numerical Study on Kinetic Effects of Driving Frequency in Atmospheric Radio Frequency Discharges Using Deep Neural Network. IEEE Transactions on Plasma Science, 2023, 51(5): 1212-1222. DOI:10.1109/TPS.2023.3267733
    3. Ai, F., Liu, Z.-B., Zhang, Y.-T. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning | [结合机器学习的大气压介质阻挡放电数值模拟研究]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(24): 245201. DOI:10.7498/aps.71.20221555
    4. Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Comparing Study on Formation of Large Discharge Currents in Atmospheric Pulse-Modulated Radio Frequency Discharges. IEEE Transactions on Plasma Science, 2022, 50(9): 2796-2804. DOI:10.1109/TPS.2022.3188019
    5. Wang, X., Gao, S., Zhang, Y. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium-oxygen admixtures. Plasma Science and Technology, 2022, 24(8): 085401. DOI:10.1088/2058-6272/ac67bf
    6. Gao, S.-H., Cheng, R.-G., Zhang, Y.-T. Numerical Study on Operation Optimization of Atmospheric Radio-Frequency Glow Discharges Modulated by Pulses. IEEE Transactions on Plasma Science, 2022, 50(3): 609-618. DOI:10.1109/TPS.2022.3147853
    7. Gao, S.-H., Wang, X.-L., Zhang, Y.-T. Modeling study on the enhancement of atmospheric pulse-modulated radio-frequency discharge assisted by pulsed voltage. Physics of Plasmas, 2021, 28(11): 0061546. DOI:10.1063/5.0061546
    8. ZHAO, P., CHANG, C., SHU, P. et al. Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air. Plasma Science and Technology, 2021, 23(8): 085003. DOI:10.1088/2058-6272/ac0688
    9. Wang, X.-L., Gao, S.-H., Zhang, Y.-T. Numerical study on optimization of atmospheric pulse-modulated radio frequency discharges in the very high frequency range. Physics of Plasmas, 2021, 28(7): 073511. DOI:10.1063/5.0048966
    10. Shen, J., Cheng, C., Xu, Z. et al. Principles and Characteristics of Cold Plasma at Gas Phase and Gas-Liquid Phase. Applications of Cold Plasma in Food Safety, 2021. DOI:10.1007/978-981-16-1827-7_1
    11. Gao, S.-H., Wang, X.-C., Zhang, Y.-T. Numerical study on discharge characteristics in ultra-high frequency band modulated by pulses with electrodes covered by barriers | [脉冲调制条件下介质阻挡特高频放电特性的数值模拟]. Wuli Xuebao/Acta Physica Sinica, 2020, 69(11): 115204. DOI:10.7498/aps.69.20191853

    Other cited types(0)

Catalog

    Article views (189) PDF downloads (167) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return