Advanced Search+
Pan ZHAO (赵攀), Jianguo GU (顾建国), Hongyu WANG (王虹宇), Ya ZHANG (张雅), Xiaoying XU (徐晓英), Wei JIANG (姜巍). How bead shapes affect the plasma streamer characteristics in packed-bed dielectric barrier discharges: a kinetic modeling study[J]. Plasma Science and Technology, 2020, 22(3): 34013-034013. DOI: 10.1088/2058-6272/ab65b3
Citation: Pan ZHAO (赵攀), Jianguo GU (顾建国), Hongyu WANG (王虹宇), Ya ZHANG (张雅), Xiaoying XU (徐晓英), Wei JIANG (姜巍). How bead shapes affect the plasma streamer characteristics in packed-bed dielectric barrier discharges: a kinetic modeling study[J]. Plasma Science and Technology, 2020, 22(3): 34013-034013. DOI: 10.1088/2058-6272/ab65b3

How bead shapes affect the plasma streamer characteristics in packed-bed dielectric barrier discharges: a kinetic modeling study

Funds: This work was supported by the National Magnetic Confinement Fusion Energy Research Project (Nos. 2017YFE0301803 and 2015GB120003), National Natural Science Foundation of China (Nos. 11775164 and 11775090), and the Fundamental Research Funds for the Central Universities (WUT: 2017IVA79 and 2018IB011).
More Information
  • Received Date: September 26, 2019
  • Revised Date: December 17, 2019
  • Accepted Date: December 25, 2019
  • Different shapes of dielectric packing beads could affect streamer propagating direction, plasma streamer behavior, and streamer types, such as surface discharge, surface-to-surface discharge, and volume discharge. In this paper, a 2D particle-in-cell/Monte Carlo collision model is used to investigate the effect of the bead shapes on streamer characteristics in packed-bed dielectric barrier discharges. We calculate the electron density, ion density, excitation rate, ionization rate and the electric field with different bead shapes in two cases of seed electron configurations. The results demonstrate that both the configurations of seed electrons and the shape of beads could influence plasma properties. In the case of seed electrons located directly above the beads, the streamer cannot be generated with square beads, while weak surface ionization waves (SIWs) are developed with circle and triangle beads, when the distance between the seed electrons and the upper plate is as close as 0.02 mm. Whereas, the distance between the seed electrons and the upper plate is 0.06 mm, the streamers can be generated with all three bead shapes, but SIWs are still weak. This is because different shapes of beads induce different electric field and surface charging along the dielectric bead surfaces, determining the generation of SIWs. In the case of seed electrons placed between two beads, streamers can propagate in all three bead shape configurations, and the SIWs are enhanced.
  • [1]
    Neyts E C et al 2015 Chem. Rev. 115 13408
    [2]
    Yi H et al 2015 ACS Catal. 5 2735
    [3]
    O’Neill B J et al 2015 ACS Catal. 5 1804
    [4]
    Chen H L et al 2008 Appl. Catal. B 85 1
    [5]
    Van Durme J et al 2008 Appl. Catal. B 78 324
    [6]
    Chen H L et al 2009 Environ. Sci. Technol. 43 2216
    [7]
    Whitehead J C 2010 Pure Appl. Chem. 82 1329
    [8]
    Neyts E C and Bogaerts A 2014 J. Phys. D: Appl. Phys. 47 224010
    [9]
    Takashima K and Kaneko T 2017 Plasma Sources Sci.Technol. 26 065018
    [10]
    Nozaki T et al 2017 Plasma Process. Polym. 14 1790061
    [11]
    Liu R et al 2019 Plasma Sci. Technol. 21 054001
    [12]
    Kim H H and Ogata A 2011 Eur. Phys. J. Appl. Phys. 55 13806
    [13]
    Gallon H J, Tu X and Whitehead J C 2012 Plasma Process.Polym. 9 90
    [14]
    Huang Y et al 2019 Polymers 11 187
    [15]
    Mei D H et al 2016 Plasma Process. Polym. 13 544
    [16]
    Zhu S J et al 2019 Plasma Sci. Technol. 21 085504
    [17]
    Van Laer K and Bogaerts A 2016 Plasma Sources Sci.Technol. 25 015002
    [18]
    Wang W Z et al 2018 Chem. Eng. J. 334 2467
    [19]
    Dong L F et al 2010 Phys. Plasmas 17 102314
    [20]
    Zhang Y et al 2015 New J. Phys. 17 083056
    [21]
    Babaeva N Y and Kushner M J 2014 Plasma Sources Sci.Technol. 23 065047
    [22]
    Babaeva N Y, Naidis G V and Kushner M J 2018 Plasma Sources Sci. Technol. 27 015016
    [23]
    Fan W L et al 2018 Phys. Plasmas 25 023502
    [24]
    Chanrion O and Neubert T 2008 J. Comput. Phys. 227 7222
    [25]
    Papageorghiou L et al 2009 J. Phys. D: Appl. Phys. 42 105201
    [26]
    Babaeva N Y and Kushner M J 2011 Plasma Sources Sci.Technol. 20 035017
    [27]
    Akishev Y et al 2013 J. Phys. D: Appl. Phys. 46 464014
    [28]
    Inada Y et al 2017 J. Phys. D: Appl. Phys. 50 174005
    [29]
    Šimek M 2014 J. Phys. D: Appl. Phys. 47 463001
    [30]
    Babaeva N Y, Bhoj A N and Kushner M J 2006 Plasma Sources Sci. Technol. 15 591
    [31]
    Zhang Y et al 2017 Plasma Sources Sci. Technol. 26 054002
    [32]
    Gao M X et al 2018 Catalysts 8 248
    [33]
    Gu J G et al 2019 J. Appl. Phys. 125 153303
    [34]
    Kang W S et al 2003 IEEE Trans. Plasma Sci. 31 504
    [35]
    Takaki K, Chang J S and Kostov K G 2004 IEEE Trans.Dielect. Electr. Insul. 11 481
    [36]
    Kruszelnicki J et al 2017 J. Phys. D: Appl. Phys. 50 025203
    [37]
    Van Laer K and Bogaerts A 2017 Plasma Process. Polym. 14 1600129
    [38]
    Van Laer K and Bogaerts A 2017 Plasma Sources Sci.Technol. 26 085007
    [39]
    Xiong Z M and Kushner M J 2012 Plasma Sources Sci.Technol. 21 034001
    [40]
    Tu X, Gallon H J and Whitehead J C 2011 IEEE Trans.Plasma Sci. 39 2172
    [41]
    Ye Q Z et al 2008 J. Phys. D: Appl. Phys. 41 025207
    [42]
    Zhang Y R, Neyts E C and Bogaerts A 2016 J. Phys. Chem. C 120 25923
    [43]
    Nieter C and Cary J R 2004 J. Comput. Phys. 196 448
    [44]
    Jiang W, Zhang Y and Bogaerts A 2014 New J. Phys. 16 113036
    [45]
    Zhang Q Z and Bogaerts A 2018 Plasma Sources Sci. Technol.27 035009
    [46]
    Fitzsimmons C et al 2000 J. Phys. Chem. A 104 6032
    [47]
    Bill A et al 1998 Stud. Surf. Sci. Catal. 114 541
    [48]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley-Interscience)
    [49]
    Furman M A and Pivi M T F 2002 Phys. Rev. Spec. Top. Accel.Beams 5 124404
    [50]
    Phelps A V and Petrovic Z L 1999 Plasma Sources Sci.Technol. 8 R21
    [51]
    Pancheshnyi S et al 2012 Chem. Phys. 398 148
    [52]
    Itikawa Y 2006 J. Phys. Chem. Ref. Data 35 31
    [53]
    Edgcombe C J and Valdrè U 2001 J. Microsc. 203 188
    [54]
    Zhang Y R, Neyts E C and Bogaerts A 2018 Plasma Sources Sci. Technol. 27 055008

Catalog

    Article views (139) PDF downloads (87) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return