Advanced Search+
Babak GHORBANIAN, Mohammad TAJALLY, Seyed Mohammad MOUSAVI KHOIE, Hossein TAVAKOLI. Formation mechanism of Al2O3/MoS2 nanocomposite coating by plasma electrolytic oxidation (PEO)[J]. Plasma Science and Technology, 2020, 22(6): 65503-065503. DOI: 10.1088/2058-6272/ab777c
Citation: Babak GHORBANIAN, Mohammad TAJALLY, Seyed Mohammad MOUSAVI KHOIE, Hossein TAVAKOLI. Formation mechanism of Al2O3/MoS2 nanocomposite coating by plasma electrolytic oxidation (PEO)[J]. Plasma Science and Technology, 2020, 22(6): 65503-065503. DOI: 10.1088/2058-6272/ab777c

Formation mechanism of Al2O3/MoS2 nanocomposite coating by plasma electrolytic oxidation (PEO)

More Information
  • Received Date: November 23, 2019
  • Revised Date: February 16, 2020
  • Accepted Date: February 17, 2020
  • In this study, an Al2O3/MoS2 nanocomposite coating was created on an aluminum 1050 substrate using the plasma electrolytic oxidation method. The zeta potential measurements showed that small MoS2 particles have negative potential and move toward the anode electrode. The nanoparticles of MoS2 were found to have a zeta potential of −25 mV, which prevents suspension in the solution. Thus, to produce an Al2O3/MoS2 nanocomposite, one has to use the microparticles of MoS2. The X-ray diffraction analyses showed that the produced coatings contained α-Al2O3, γ-Al2O3, and MoS2, and that the size of MoS2 particles can be reduced to 30 nm. It was observed that prolonged suspension in the electrolyte results in an enhanced formation of an Al2O3/MoS2 nanocomposite. Using the results, it was hypothesized that the mechanism of the formation of the Al2O3/MoS2 nanocomposite coating on the aluminum 1050 substrate is based on electrical energy discharge.
  • [1]
    Qin Y K et al 2016 Mater. Des. 107 311
    [2]
    He Y Y et al 2015 Plasma Sci. Technol. 17 761
    [3]
    Chen F et al 2007 Plasma Sci. Technol. 9 587
    [4]
    Zhuang J J et al 2016 Mater. Sci. Technol. 32 1559
    [5]
    Zhuang J J et al 2015 Appl. Surf. Sci. 357 1463
    [6]
    Teh T H et al 2003 Corros. Sci. 45 2757
    [7]
    Yerokhin A L et al 2004 Surf. Coat. Technol. 182 78
    [8]
    Li H T et al 2016 Plasma Sci. Technol. 18 860
    [9]
    Krishna L R, Somaraju K R C and Sundararajan G 2003 Surf.Coat. Technol. 163–164 484
    [10]
    Nie X et al 2002 Surf. Coat. Technol. 149 245
    [11]
    Ghorbanian B and Khoie S M M 2016 Acta Metall. Slovaca 22 111
    [12]
    Ghorbanian B et al 2016 Surf. Rev. Lett. 23 1650021
    [13]
    Ren S M et al 2017 Appl. Surf. Sci. 401 362
    [14]
    Bondarev A V et al 2016 Mater. Des. 93 63
    [15]
    Qin Y K, Xiong D S and Li J L 2015 Surf. Coat. Technol.269 266
    [16]
    Wu Z et al 2017 Surf. Coat. Technol. 309 21
    [17]
    Zhang X L et al 2016 Surf. Coat. Technol. 296 185
    [18]
    Mutafov P et al 2015 Surf. Coat. Technol. 261 7
    [19]
    Wang J H et al 2016 Tribol. Trans. 59 139
    [20]
    Mutyala K C et al 2016 Tribol. Lett. 61 20
    [21]
    Ocampo-Macias T et al 2015 J. Sulfur Chem. 36 385
    [22]
    Wang H D et al 2004 Vacuum 75 353
    [23]
    Arrabal R et al 2008 J. Mater. Sci. 45 1532
    [24]
    Arrabal R et al 2008 Appl. Surf. Sci. 254 6937
    [25]
    Lee K M et al 2011 Surf. Coat. Technol. 205 3779
    [26]
    Ma G F et al 2013 J. Power Sour. 229 72
    [27]
    Ghorbanian B et al 2020 Surf. Innov. (https://doi.org/10.1680/jsuin.19.00065)
    [28]
    Mu M et al 2013 Surf. Coat. Technol. 214 124
    [29]
    Chang F C et al 2016 Surf. Coat. Technol. 303 68
    [30]
    Salimkhani H et al 2019 Int. J. Appl. Ceram. Technol. 16 552
    [31]
    Hunter R J 1988 Zeta Potential in Colloid Science: Principles and Applications (London: Academic)
    [32]
    Ghanbari A et al 2018 Mater. Today Proc. 5 15677
    [33]
    Jastrzębska A M et al 2015 Surf. Coat. Technol. 271 225
    [34]
    Předota M, Machesky M L and Wesolowski D J 2016 Langmuir 32 10189
    [35]
    Zeng Z H et al 2016 RSC Adv. 6 74110
    [36]
    Ng W 2018 PeerJ Preprints 6 e26697v1
    [37]
    Wyrzykowska E et al 2016 Nanotechnology 27 445702
    [38]
    Salimkhani H et al 2016 Surf. Interfaces 5 1
    [39]
    Yerokhin A L et al 1999 Surf. Coat. Technol. 122 73
    [40]
    Koopaie M et al 2020 Mater. Res. Express 7 015417
    [41]
    Liu P, Zhu Y W and Zhang S W 2015 Powder Technol. 281 83
    [42]
    Dunleavy C S et al 2009 Surf. Coat. Technol. 203 3410
    [43]
    Aliev M K, Sabour A and Taheri P 2008 Protect. Met. 44 618
    [44]
    Khiabani A B et al 2018 Mater. Today Proc. 5 15603
    [45]
    Cui L Y et al 2017 Corros. Sci. 118 84
    [46]
    Wang Y L et al 2010 Surf. Coat. Technol. 204 1685
    [47]
    Yang Y and Liu Y H 2010 J. Mater. Sci. Technol. 26 1016
    [48]
    Zhang J F et al 2009 Electrochim. Acta 55 560
    [49]
    Satapathy A K et al 2009 Corros. Sci. 51 2848
    [50]
    Bordbar-Khiabani A et al 2020 Mater. Chem. Phys. 239 122003
  • Cited by

    Periodical cited type(8)

    1. Orgen, S.B., Dela Pena, E.M.B. Microstructure and Corrosion Behavior of PEO-Coated AA7075 Under Pulsed Unipolar Potential Control Mode. Coatings, 2024, 14(12): 1498. DOI:10.3390/coatings14121498
    2. Sun, S., Shang, J. Improved wear and corrosion resistance of MoS2/MgO/MgAl2O4 composite layer in-situ prepared by one-step micro-arc oxidation. Materials Today Communications, 2024. DOI:10.1016/j.mtcomm.2024.110151
    3. Hu, Q., Li, X., Ruan, Y. et al. Friction Reduction of Aluminum Alloy Micro-arc Oxidation Coating by Filling Graphene Oxide. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-09666-2
    4. Wang, G., Song, J., Zhao, G. et al. Improving output performance of ultrasonic motor by coating MoS2 on the stator. Tribology International, 2023. DOI:10.1016/j.triboint.2023.108608
    5. Wang, S., Yu, Q., Wang, X. et al. SiO2 passivated TaS2 saturable absorber mirrors for the ultrafast pulse generation. Journal of Alloys and Compounds, 2022. DOI:10.1016/j.jallcom.2022.165742
    6. Zhu, L., Wang, Z., Li, C. et al. Highly stable 1T-MoS2 by magneto-hydrothermal synthesis with Ru modification for efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2022. DOI:10.1039/d2ta05954a
    7. Tsai, D.-S., Chou, C.-C. Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A review. Coatings, 2021, 11(3): 1-21. DOI:10.3390/coatings11030270
    8. Esmaeili, M., Tadayonsaidi, M., Ghorbanian, B. The effect of PEO parameters on the properties of biodegradable Mg alloys: A review. Surface Innovations, 2020, 9(4): 184-198. DOI:10.1680/jsuin.20.00057

    Other cited types(0)

Catalog

    Article views (140) PDF downloads (77) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return