Advanced Search+
Yuxi XIA (夏玉玺), Shengpeng YANG (杨生鹏), Shaoyong CHEN (陈少永), Changjian TANG (唐昌建). Focusing characteristics of the relativistic electron beam transmitting in ion channel[J]. Plasma Science and Technology, 2020, 22(8): 85001-085001. DOI: 10.1088/2058-6272/ab785d
Citation: Yuxi XIA (夏玉玺), Shengpeng YANG (杨生鹏), Shaoyong CHEN (陈少永), Changjian TANG (唐昌建). Focusing characteristics of the relativistic electron beam transmitting in ion channel[J]. Plasma Science and Technology, 2020, 22(8): 85001-085001. DOI: 10.1088/2058-6272/ab785d

Focusing characteristics of the relativistic electron beam transmitting in ion channel

Funds: The National Key Research and Development Program of China (No. 2017YFE0300501), and the National Magnetic Confinement Fusion Energy Development Research Project (No. 2017YFE0301203).
More Information
  • Received Date: November 17, 2019
  • Revised Date: February 19, 2020
  • Accepted Date: February 19, 2020
  • Based on the beam–plasma system model established in this paper, the trajectory of the electron beam in the ion channel is studied quantitatively through the envelope equation. Under different initial system parameters, the focusing transmission conditions of the beam in the ion channel are discussed. Then, a series of particle-in-cell simulations are performed, which generally versifies the theoretical results and shows some further details of the focusing behavior of the beam. It is found that the deceleration of some electrons around the focusing point or the beam–plasma interaction at the ion channel boundary will result in the generation of the residual electrons, which forms the electron return current that leads to the new instabilities influencing the focusing characteristics of the beam.
  • [1]
    Faure J et al 2006 Nature 444 737
    [2]
    Kneip S et al 2010 Nat. Phys. 6 980
    [3]
    Cipiccia S et al 2012 J. Appl. Phys. 111 063302
    [4]
    Sei N et al 2015 Phys. Lett. A 379 2399
    [5]
    Leemans W P et al 2003 Phys. Rev. Lett. 91 074802
    [6]
    Lee D S, Choi Y H and Jeong H D 2017 J. Ind. Eng. Chem.53 82
    [7]
    Bennett N et al 2017 Phys. Plasmas. 24 012702
    [8]
    Sanchez P P et al 2015 Nucl. Instrum. Methods Phys. Res. Sec.A 778 67
    [9]
    Duran Yildiz H et al 2019 Nucl. Instrum. Methods Phys. Res.Sec. A 939 74
    [10]
    Chen C H et al 2002 IEEE Trans. Plasma Sci. 30 1108
    [11]
    Clayton C E et al 2002 Physical Review Letters 88 154801
    [12]
    Hafz N A M et al 2008 Nat. Photonics. 2 571
    [13]
    Neog N K and Mohanty S R 2007 Physics Letters A 361 377
    [14]
    Li F et al 2013 Phys. Rev. Lett. 111 015003
    [15]
    de la Ossa A M et al 2013 Phys. Rev. Lett. 111 245003
    [16]
    Bennett W H et al 1934 Phys. Rev. 45 890
    [17]
    Litos M et al 2014 Nature 515 92
    [18]
    Wang W T et al 2016 Phys. Rev. Lett. 117 124801
    [19]
    Lee Buchanan H 1987 Phys. Fluids. 30 221
    [20]
    Okamura R, Nakamura Y and Kawashima N 1977 Plasma Phys. 19 997
    [21]
    Miller J D et al 1992 Phys. Fluids B 4 4121
    [22]
    Mangles S P D et al 2006 Phys. Rev. Lett. 96 215001
    [23]
    van Tilborg J et al 2015 Phys. Rev. Lett. 115 184802
    [24]
    van Tilborg J et al 2017 Phys. Rev. Accel. Beams. 20 032803
    [25]
    Mangles S P D et al 2004 Nature 431 535
    [26]
    Zhou Q et al 2016 Physics of Plasmas. 23 063107
    [27]
    Tsung F S et al 2004 Phys. Rev. Lett. 93 185002
    [28]
    Swanekamp S B et al 1992 Phys. Fluids B 4 1332
    [29]
    Jha P and Kumar P 1996 IEEE Trans. Plasma Sci. 24 1359
    [30]
    Ryckbosch F, Polfliet S and Eeckhout L 2012 ACM Trans.Arch. Code Optim. 8 52
    [31]
    Kartashov I N et al 2018 Plasma Phys. Rep. 44 289
    [32]
    Rainwater J C et al 1983 J. Chem. Phys. 79 1462
    [33]
    Djilali B et al 2014 Plasma Sci. Technol. 16 588
    [34]
    Lovelace R V and Sudan R N 1971 Phys. Rev. Lett. 27 1256
    [35]
    Bret A, Gremillet L and Dieckmann M E 2010 Phys. Plasmas.17 120501
  • Related Articles

    [1]Seul-Ki HAN, Se-Hwan PARK, Seong-Kyu AHN. Uranium measurements using laser-induced breakdown spectroscopy in lithium chloride- potassium chloride salt of pyroprocessing[J]. Plasma Science and Technology, 2020, 22(7): 74015-074015. DOI: 10.1088/2058-6272/ab85bc
    [2]Eshraga A A SIDDIG (尚晓冉), Yu XU (徐雨), Tao HE (何涛), Ming GAO (高明), Baojing YANG (杨宝敬), Tianshu WANG (王天舒), Jing ZHANG (张菁). Plasma-induced graft polymerization on the surface of aramid fabrics with improved omniphobicity and washing durability[J]. Plasma Science and Technology, 2020, 22(5): 55503-055503. DOI: 10.1088/2058-6272/ab65dd
    [3]R L TANNA, J GHOSH, Harshita RAJ, Rohit KUMAR, Suman AICH, Vaibhav RANJAN, K A JADEJA, K M PATEL, S B BHATT, K SATHYANARAYANA, P K CHATTOPADHYAY, M N MAKWANA, K S SHAH, C N GUPTA, V K PANCHAL, Praveenlal EDAPPALA, Bharat ARAMBHADIYA, Minsha SHAH, Vismay RAULJI, M B CHOWDHURI, S BANERJEE, R MANCHANDA, D RAJU, P K ATREY, Umesh NAGORA, J RAVAL, Y S JOISA, K TAHILIANI, S K JHA, M V GOPALKRISHANA. Plasma production and preliminary results from the ADITYA Upgrade tokamak[J]. Plasma Science and Technology, 2018, 20(7): 74002-074002. DOI: 10.1088/2058-6272/aabb4f
    [4]Keping YAN (闫克平), Qikang JIN (金杞糠), Chao ZHENG (郑超), Guanlei DENG (邓官垒), Shengyong YIN (殷胜勇), Zhen LIU (刘振). Pulsed cold plasma-induced blood coagulation and its pilot application in stanching bleeding during rat hepatectomy[J]. Plasma Science and Technology, 2018, 20(4): 44005-044005. DOI: 10.1088/2058-6272/aa9b79
    [5]Shiheng YIN (尹诗衡), Li REN (任力), Yingjun WANG (王迎军). Plasma graft of poly(ethylene glycol) methyl ether methacrylate (PEGMA) on RGP lens surface for reducing protein adsorption[J]. Plasma Science and Technology, 2017, 19(1): 15501-015501. DOI: 10.1088/1009-0630/19/1/015501
    [6]YU Jie(俞洁), YANG Gege(杨格格), PAN Yuanpei(潘元沛), LU Quanfang(陆泉芳), YANG Wu(杨武), GAO Jinzhang(高锦章). Poly (Acrylamide-co-Acrylic Acid) Hydrogel Induced by Glow- Discharge Electrolysis Plasma and Its Adsorption Properties for Cationic Dyes[J]. Plasma Science and Technology, 2014, 16(8): 767-776. DOI: 10.1088/1009-0630/16/8/07
    [7]YIN Shiheng (尹诗衡), REN Li (任力), WANG Yingjun (王迎军). Argon Plasma-Induced Graft Polymerization of PEGMA on Chitosan Membrane Surface for Cell Adhesion Improvement[J]. Plasma Science and Technology, 2013, 15(10): 1041-1046. DOI: 10.1088/1009-0630/15/10/15
    [8]LI Xiangqing(李湘庆), HUA Hui(华辉), JIANG Dongxing(江栋兴), YE Yanlin(叶沿林). Study of Isotopic Distribution of the Projectile-like Fragments Produced in the 17,18N + 197Au Reactions at 33MeV/u[J]. Plasma Science and Technology, 2012, 14(6): 455-459. DOI: 10.1088/1009-0630/14/6/04
    [9]YU Hong(于红), YU Shenjing(于沈晶), REN Chunsheng(任春生), XIU Zhilong(修志龙). Plasma-Induced Degradation of Polypropene Plastics in Natural Volatile Constituents of Ledum palustre Herb[J]. Plasma Science and Technology, 2012, 14(2): 157-161. DOI: 10.1088/1009-0630/14/2/14
    [10]LAN Yan, YOU Qingliang, CHENG Cheng, ZHANG Suzhen, NI Guohua, M. NAGATSU, MENG Yuedong. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma[J]. Plasma Science and Technology, 2011, 13(1): 88-92.

Catalog

    Article views (227) PDF downloads (315) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return