Advanced Search+
W BUANGAM, J GARCIA, T ONJUN, JET Contributors. Impact of E × B flow shear stabilization on particle confinement and density peaking at JET[J]. Plasma Science and Technology, 2020, 22(6): 65101-065101. DOI: 10.1088/2058-6272/ab7b0e
Citation: W BUANGAM, J GARCIA, T ONJUN, JET Contributors. Impact of E × B flow shear stabilization on particle confinement and density peaking at JET[J]. Plasma Science and Technology, 2020, 22(6): 65101-065101. DOI: 10.1088/2058-6272/ab7b0e

Impact of E × B flow shear stabilization on particle confinement and density peaking at JET

Funds: This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement No. 633053.
More Information
  • Received Date: September 16, 2019
  • Revised Date: February 26, 2020
  • Accepted Date: February 27, 2020
  • The impact of the E × B flow shear stabilization on particle transport and density peaking at JET is analyzed in the framework of integrated modelling with the CRONOS code. For that purpose, plasmas from a power scan which show a significant increasing of density peaking with the injected neutral beam injection power have been used as a modeling basis. By means of simulations with the quasilinear model GLF23 for the heat and particle transport, a strong link between the particle confinement and E × B flow shear stabilization is found. This is particularly important close to the pedestal region where the particle pinch direction becomes strongly inward for high E × B flow shear values. Such impact introduces some non-negligible deviation from the well-known collisonality dependence of the density peaking, whose general trend has been also obtained in the framework of this modelling by performing pedestal density scans.
  • [1]
    Challis C D et al 2015 Nucl. Fusion 55 053031
    [2]
    Luce T C et al 2018 Nucl. Fusion 58 026023
    [3]
    McDonald D C et al 2004 Plasma Phys. Control. Fusion 46 A215
    [4]
    Garcia J et al 2015 Nucl. Fusion 55 053007
    [5]
    Doerk H et al 2016 Plasma Phys. Control. Fusion 58 115005
    [6]
    Citrin J et al 2015 Plasma Phys. Control. Fusion 57 014032
    [7]
    Fable E, Angioni C and Sauter O 2010 Plasma Phys. Control.Fusion 52 015007
    [8]
    Garzotti L et al 2006 Nucl. Fusion 46 994
    [9]
    Garcia J et al 2014 Nucl. Fusion 54 093010
    [10]
    Mordijck S et al 2016 Plasma Phys. Control. Fusion 58 014003
    [11]
    Hinton F L and Staebler G M 1993 Phys. Fluids B 5 1281
    [12]
    Malkov M A and Diamond P H 2008 Phys. Plasmas 15 122301
    [13]
    Askinazi L G et al 2017 Plasma Phys. Control. Fusion 59 014037
    [14]
    Belokurov A A et al 2018 Nucl. Fusion 58 112007
    [15]
    Garcia J et al 2019 Plasma Phys. Control. Fusion 61 104002
    [16]
    Artaud J F et al 2010 Nucl. Fusion 50 043001
    [17]
    Erba M et al 1997 Plasma Phys. Control. Fusion 39 261
    [18]
    Kinsey J E, Staebler G M and Waltz R E 2005 Phys. Plasmas 12 052503
    [19]
    Hayashi N et al 2018 Nucl. Fusion 58 066001
    [20]
    Tala T J J et al 2001 Plasma Phys. Control. Fusion 43 507
    [21]
    Houlberg W A et al 1997 Phys. Plasmas 4 3230
    [22]
    Staebler G M, Kinsey J E and Waltz R E 2005 Phys. Plasmas 12 102508
    [23]
    Cordey J G and for the ITPA H-Mode Database Working Groupthe ITPA Pedestal Database Working Group 2003 Nucl.Fusion 43 670
    [24]
    Viezzer E et al 2017 Nucl. Fusion 57 022020
    [25]
    Taroni A et al 1994 Plasma Phys. Control. Fusion 36 1629
    [26]
    Angioni C et al 2007 Nucl. Fusion 47 1326
    [27]
    Schneider M et al 2011 Nucl. Fusion 51 063019
    [28]
    Nycander J and Yankov V V 1995 Phys. Plasmas 2 2874
    [29]
    Yan’kov V V 1995 Plasmas Phys. Rep. 21 719
    [30]
    Bourdelle C 2005 Plasma Phys. Control. Fusion 47 A317
    [31]
    Garcia J et al 2017 Plasma Phys. Control. Fusion 59 014023
    [32]
    Garcia J et al 2019 Nucl. Fusion 59 086047
    [33]
    Mikkelsen D R et al 2015 Phys. Plasmas 22 062301
  • Cited by

    Periodical cited type(4)

    1. Li, H., Wang, L., Fu, Y.L. et al. Surrogate model of turbulent transport in fusion plasmas using machine learning. Nuclear Fusion, 2025, 65(1): 016015. DOI:10.1088/1741-4326/ad8b5b
    2. Li, H., Li, J., Wang, Z. et al. Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas. Chinese Physics B, 2022, 31(6): 065207. DOI:10.1088/1674-1056/ac6011
    3. Li, H., Fu, Y., Li, J. et al. Machine learning of turbulent transport in fusion plasmas with neural network. Plasma Science and Technology, 2021, 23(11): 115102. DOI:10.1088/2058-6272/ac15ec
    4. Fransson, E., Eriksson, F., Oberparleiter, M. et al. Comparing particle transport in JET and DIII-D plasmas: Gyrokinetic and gyrofluid modelling. Nuclear Fusion, 2021, 61(1): 016015. DOI:10.1088/1741-4326/abbf63

    Other cited types(0)

Catalog

    Article views (184) PDF downloads (110) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return