Advanced Search+
Youping LU (鲁又萍), Yue SU (苏悦), Wei GE (葛伟), Tengfei YANG (杨腾飞), Zhanfeng YAN (闫占峰), Yugang WANG (王宇钢), Songqin XIA (夏松钦). Conversion between Vickers hardness and nanohardness by correcting projected area with sink-in and pile-up effects[J]. Plasma Science and Technology, 2020, 22(6): 65602-065602. DOI: 10.1088/2058-6272/ab7d47
Citation: Youping LU (鲁又萍), Yue SU (苏悦), Wei GE (葛伟), Tengfei YANG (杨腾飞), Zhanfeng YAN (闫占峰), Yugang WANG (王宇钢), Songqin XIA (夏松钦). Conversion between Vickers hardness and nanohardness by correcting projected area with sink-in and pile-up effects[J]. Plasma Science and Technology, 2020, 22(6): 65602-065602. DOI: 10.1088/2058-6272/ab7d47

Conversion between Vickers hardness and nanohardness by correcting projected area with sink-in and pile-up effects

Funds: This work was financially supported by the National Magn- etic Confinement Fusion Energy Research Project of China (No. 2015GB113000), National Natural Science Foundation of China (Nos. 11675005, 11935004), China Postdoctoral Science Foundation (No. 2018M641093) and the National Defense Nuclear Material Technology Innovation Center.
More Information
  • Received Date: December 03, 2019
  • Revised Date: March 01, 2020
  • Accepted Date: March 05, 2020
  • The Vickers hardness test has been widely used for neutron-irradiated materials and nanoindentation for ion-irradiated materials. Comparing the Vickers hardness and nanohardness of the same materials quantitatively and establishing a correlation between them is meaningful. In this study, five representative materials—pure titanium (Ti), nickel (Ni), tungsten (W), 304 coarse-grained stainless steel (CG-SS) and 304 nanocrystalline austenitic stainless steel (NG-SS)—are investigated for comparison. The results show that the relationship between Vickers hardness and nanohardness does not conform to a mathematical geometric relationship because of sink-in and pile-up effects confirmed by finite element analysis (FEA) and the results of optical microscopy. Finally, one new method was developed by excluding the effects of sink-in and pile-up in materials. With this improved correction in the projected area of the Vickers hardness and nanohardness, the two kinds of hardness become identical.
  • [1]
    Gussev M N et al 2017 Nucl. Eng. Des. 320 298
    [2]
    Sacksteder I and Schneider H C 2011 Fusion Eng. Des.86 2565
    [3]
    Galy N et al 2017 Nucl. Instrum. Methods Phys. Res. B 409 235
    [4]
    Ribis J et al 2015 J. Mater. Res. 30 2210
    [5]
    Kohyama A et al 2000 Fusion Eng. Des. 51–52 789
    [6]
    Hosemann P et al 2012 J. Nucl. Mater. 425 136
    [7]
    Hosemann P et al 2009 J. Nucl. Mater. 389 239
    [8]
    Yabuuchi K et al 2014 J. Nucl. Mater. 446 142
    [9]
    Zhang Z X et al 2016 Nucl. Mater. Energy 9 539
    [10]
    Dao M et al 2001 Acta Mater. 49 3899
    [11]
    Lee H, Lee J H and Pharr G M 2005 J. Mech. Phys. Solids 53 2037
    [12]
    Oka H et al 2015 J. Nucl. Mater. 462 470
    [13]
    Kasada R et al 2011 Fusion Eng. Des. 86 2658
    [14]
    Kareer A et al 2018 J. Nucl. Mater. 498 274
    [15]
    Shin C, Jin H H and Kim M W 2009 J. Nucl. Mater. 392 476
    [16]
    Liu P P, Wan F R and Zhan Q 2015 Nucl. Instrum. Methods Phys. Res. B 342 13
    [17]
    Xiao X Z et al 2017 J. Nucl. Mater. 485 80
    [18]
    Qian L M et al 2005 Surf. Coat. Technol. 195 264
    [19]
    Yang Y T et al 2018 J. Nucl. Mater. 498 129
    [20]
    Ding Z N et al 2017 J. Nucl. Mater. 493 53
    [21]
    Fischer-Cripps A C 2011 Nanoindentation testing ed A C Fischer-Cripps Nanoindentation (New York: Springer) 2011: 26
    [22]
    Manika I and Maniks J 2006 Acta Mater. 54 2049
    [23]
    Liu Y and Ngan A H W 2001 Scr. Mater 44 237
    [24]
    Pharr G M, Herbert E G and Gao Y F 2010 Ann. Rev. Mater.Res. 40 271
    [25]
    Sakharova N A et al 2009 Int. J. Solids Struct. 46 1095
    [26]
    Pintaude G, Hoechele A R and Cipriano G L 2012 Mater. Sci.Technol. 28 1051
    [27]
    Xu Z H and Ågren J 2004 Phil. Mag. 84 2367
    [28]
    Karthik V et al 2012 Int. J. Mech. Sci. 54 74
    [29]
    Kim B M, Lee C J and Lee J M 2010 J. Mech. Sci. Technol.24 73
  • Cited by

    Periodical cited type(13)

    1. Li, J., Xu, Z., Xia, Y. et al. Strategy for preparing nanocrystalline Ta-N gradient layer with enhanced mechanical and tribological performance via microwave plasma nitriding. Ceramics International, 2024, 50(21): 41636-41647. DOI:10.1016/j.ceramint.2024.08.013
    2. Gao, X., Liu, J., Bo, L. et al. Achieving superb mechanical properties in CoCrFeNi high-entropy alloy microfibers via electric current treatment. Acta Materialia, 2024. DOI:10.1016/j.actamat.2024.120203
    3. Li, B., Zhang, X., Tang, S. et al. Influence of spraying power on microstructure, phase composition and nanomechanical properties of plasma-sprayed nanostructured Yb-silicate environmental barrier coatings. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.130450
    4. Wang, Z., Niu, S., Lou, M. et al. The Joint Formation Mechanism, Microstructure, and Mechanical Performance of Resistance Rivet-Welded Mg/Steel Joints. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-10611-6
    5. Niu, J., Miao, B., Guo, J. et al. Leveraging Deep Neural Networks for Estimating Vickers Hardness from Nanoindentation Hardness. Materials, 2024, 17(1): 148. DOI:10.3390/ma17010148
    6. Dong, Z., Pan, R., Zhou, T. et al. Microstructure and mechanical property of Ti/Cu ultra-thin foil lapped joints with different weld depths by nanosecond laser welding. Journal of Manufacturing Processes, 2023. DOI:10.1016/j.jmapro.2023.10.082
    7. Sun, H., Yi, G., Wan, S. et al. Effects of Ni-5 wt% Al/Bi2O3 addition and heat treatment on mechanical and tribological properties of atmospheric plasma sprayed Al2O3 coating. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129935
    8. Mishchenko, Y., Patnaik, S., Wallenius, J. et al. Thermophysical properties and oxidation behaviour of the U0.8Zr0.2N solid solution. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101459
    9. Zakaryan, M.K., Malakpour Estalaki, S., Kharatyan, S. et al. Spontaneous Crystallization for Tailoring Polymorphic Nanoscale Nickel with Superior Hardness. Journal of Physical Chemistry C, 2022, 126(29): 12301-12312. DOI:10.1021/acs.jpcc.2c03612
    10. Stekovic, S., Romero-Ramirez, R., Selegård, L. Effect of Nitriding on Microstructure and Mechanical Properties on a Ti64 Alloy for Aerospace Applications. 2022.
    11. Kumar, R.R., Gupta, R.K., Sarkar, A. et al. Vacuum diffusion bonding of α‑titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics. Materials Characterization, 2022. DOI:10.1016/j.matchar.2021.111607
    12. Sun, H., Yi, G., Wan, S. et al. Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings. Surface and Coatings Technology, 2021. DOI:10.1016/j.surfcoat.2021.127818
    13. Raj, M., Prasad, M.J.N.V., Narasimhan, K. Microstructure and Mechanical Properties of Ti-6Al-4V Alloy/Interstitial Free Steel Joint Diffusion Bonded with Application of Copper and Nickel Interlayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(12): 6234-6247. DOI:10.1007/s11661-020-06002-w

    Other cited types(0)

Catalog

    Article views (178) PDF downloads (87) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return