Citation: | Youping LU (鲁又萍), Yue SU (苏悦), Wei GE (葛伟), Tengfei YANG (杨腾飞), Zhanfeng YAN (闫占峰), Yugang WANG (王宇钢), Songqin XIA (夏松钦). Conversion between Vickers hardness and nanohardness by correcting projected area with sink-in and pile-up effects[J]. Plasma Science and Technology, 2020, 22(6): 65602-065602. DOI: 10.1088/2058-6272/ab7d47 |
[1] |
Gussev M N et al 2017 Nucl. Eng. Des. 320 298
|
[2] |
Sacksteder I and Schneider H C 2011 Fusion Eng. Des.86 2565
|
[3] |
Galy N et al 2017 Nucl. Instrum. Methods Phys. Res. B 409 235
|
[4] |
Ribis J et al 2015 J. Mater. Res. 30 2210
|
[5] |
Kohyama A et al 2000 Fusion Eng. Des. 51–52 789
|
[6] |
Hosemann P et al 2012 J. Nucl. Mater. 425 136
|
[7] |
Hosemann P et al 2009 J. Nucl. Mater. 389 239
|
[8] |
Yabuuchi K et al 2014 J. Nucl. Mater. 446 142
|
[9] |
Zhang Z X et al 2016 Nucl. Mater. Energy 9 539
|
[10] |
Dao M et al 2001 Acta Mater. 49 3899
|
[11] |
Lee H, Lee J H and Pharr G M 2005 J. Mech. Phys. Solids 53 2037
|
[12] |
Oka H et al 2015 J. Nucl. Mater. 462 470
|
[13] |
Kasada R et al 2011 Fusion Eng. Des. 86 2658
|
[14] |
Kareer A et al 2018 J. Nucl. Mater. 498 274
|
[15] |
Shin C, Jin H H and Kim M W 2009 J. Nucl. Mater. 392 476
|
[16] |
Liu P P, Wan F R and Zhan Q 2015 Nucl. Instrum. Methods Phys. Res. B 342 13
|
[17] |
Xiao X Z et al 2017 J. Nucl. Mater. 485 80
|
[18] |
Qian L M et al 2005 Surf. Coat. Technol. 195 264
|
[19] |
Yang Y T et al 2018 J. Nucl. Mater. 498 129
|
[20] |
Ding Z N et al 2017 J. Nucl. Mater. 493 53
|
[21] |
Fischer-Cripps A C 2011 Nanoindentation testing ed A C Fischer-Cripps Nanoindentation (New York: Springer) 2011: 26
|
[22] |
Manika I and Maniks J 2006 Acta Mater. 54 2049
|
[23] |
Liu Y and Ngan A H W 2001 Scr. Mater 44 237
|
[24] |
Pharr G M, Herbert E G and Gao Y F 2010 Ann. Rev. Mater.Res. 40 271
|
[25] |
Sakharova N A et al 2009 Int. J. Solids Struct. 46 1095
|
[26] |
Pintaude G, Hoechele A R and Cipriano G L 2012 Mater. Sci.Technol. 28 1051
|
[27] |
Xu Z H and Ågren J 2004 Phil. Mag. 84 2367
|
[28] |
Karthik V et al 2012 Int. J. Mech. Sci. 54 74
|
[29] |
Kim B M, Lee C J and Lee J M 2010 J. Mech. Sci. Technol.24 73
|
1. | Li, J., Xu, Z., Xia, Y. et al. Strategy for preparing nanocrystalline Ta-N gradient layer with enhanced mechanical and tribological performance via microwave plasma nitriding. Ceramics International, 2024, 50(21): 41636-41647. DOI:10.1016/j.ceramint.2024.08.013 |
2. | Gao, X., Liu, J., Bo, L. et al. Achieving superb mechanical properties in CoCrFeNi high-entropy alloy microfibers via electric current treatment. Acta Materialia, 2024. DOI:10.1016/j.actamat.2024.120203 |
3. | Li, B., Zhang, X., Tang, S. et al. Influence of spraying power on microstructure, phase composition and nanomechanical properties of plasma-sprayed nanostructured Yb-silicate environmental barrier coatings. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.130450 |
4. | Wang, Z., Niu, S., Lou, M. et al. The Joint Formation Mechanism, Microstructure, and Mechanical Performance of Resistance Rivet-Welded Mg/Steel Joints. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-10611-6 |
5. | Niu, J., Miao, B., Guo, J. et al. Leveraging Deep Neural Networks for Estimating Vickers Hardness from Nanoindentation Hardness. Materials, 2024, 17(1): 148. DOI:10.3390/ma17010148 |
6. | Dong, Z., Pan, R., Zhou, T. et al. Microstructure and mechanical property of Ti/Cu ultra-thin foil lapped joints with different weld depths by nanosecond laser welding. Journal of Manufacturing Processes, 2023. DOI:10.1016/j.jmapro.2023.10.082 |
7. | Sun, H., Yi, G., Wan, S. et al. Effects of Ni-5 wt% Al/Bi2O3 addition and heat treatment on mechanical and tribological properties of atmospheric plasma sprayed Al2O3 coating. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129935 |
8. | Mishchenko, Y., Patnaik, S., Wallenius, J. et al. Thermophysical properties and oxidation behaviour of the U0.8Zr0.2N solid solution. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101459 |
9. | Zakaryan, M.K., Malakpour Estalaki, S., Kharatyan, S. et al. Spontaneous Crystallization for Tailoring Polymorphic Nanoscale Nickel with Superior Hardness. Journal of Physical Chemistry C, 2022, 126(29): 12301-12312. DOI:10.1021/acs.jpcc.2c03612 |
10. |
Stekovic, S., Romero-Ramirez, R., Selegård, L. Effect of Nitriding on Microstructure and Mechanical Properties on a Ti64 Alloy for Aerospace Applications. 2022.
![]() |
11. | Kumar, R.R., Gupta, R.K., Sarkar, A. et al. Vacuum diffusion bonding of α‑titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics. Materials Characterization, 2022. DOI:10.1016/j.matchar.2021.111607 |
12. | Sun, H., Yi, G., Wan, S. et al. Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings. Surface and Coatings Technology, 2021. DOI:10.1016/j.surfcoat.2021.127818 |
13. | Raj, M., Prasad, M.J.N.V., Narasimhan, K. Microstructure and Mechanical Properties of Ti-6Al-4V Alloy/Interstitial Free Steel Joint Diffusion Bonded with Application of Copper and Nickel Interlayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(12): 6234-6247. DOI:10.1007/s11661-020-06002-w |