Citation: | Jinghua YANG (杨景华), Shaoxia JIA (贾少霞), Zhenhua ZHANG (张振华), Xinghua ZHANG (张兴华), Ting JIN (金婷), Long LI (李龙), Yong CAI (蔡勇), Jian CAI (蔡建). Performance of a 4 cm iodine-fueled radio frequency ion thruster[J]. Plasma Science and Technology, 2020, 22(9): 94006-094006. DOI: 10.1088/2058-6272/ab891d |
[1] |
Dressler R A, Chiu Y H and Levandier D J 2000 Propellant alternatives for ion and hall effect thrusters Proc. 38th Aerospace Sciences Meeting and Exhibit (Reno, NV (AIAA) 2000)
|
[2] |
Tverdokhlebov O S and Semenkin A V 2001 Iodine propellant for electric propulsion—to be or not to be Proc. 37th Joint Propulsion Conf. and Exhibit (Salt Lake City, UT (AIAA) 2001)
|
[3] |
Tsay M, Frongillo J and Hohman K 2015 Iodine-fueled Mini RF ion thruster for CubeSat applications Proc. 34th Int. Electric Propulsion Conf. (Hyogo-Kobe, Japan (IEPC) 2015)
|
[4] |
Szabo J et al 2012 J. Propul. Power. 28 848
|
[5] |
Szabo J et al 2013 Iodine propellant space propulsion Proc.33rd Int. Electric Propulsion Conf. (Washington, DC (IEPC) 2013)
|
[6] |
Dankanich J W et al 2014 The iodine satellite (iSAT) hall thruster demonstration mission concept and development Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Cleveland, OH (AIAA) 2014)
|
[7] |
Szabo J et al 2015 IEEE Trans. Plasma Sci. 43 141
|
[8] |
Smith T D et al 2016 Overview of NASA iodine hall thruster propulsion system development Proc. Space Propulsion (Rome, Italy (Association Aeronautique et Astronautique) 2016)
|
[9] |
Yan N W, Guo N and Gu Z J 2018 Vacuum Cryogen. 24 332 (in Chinese)
|
[10] |
Liu H et al 2019 J Propulsion Technol. 40 12 (in Chinese)
|
[11] |
Holste K et al 2018 Eur. Phys. J. D 72 9
|
[12] |
Grondein P et al 2016 Phys. Plasmas 23 033514
|
[13] |
Tsay M and Martinez-Sanchez M 2007 Simple performance modeling of a radio-frequency ion thruster Proc. 30th Int. Electric Propulsion Conf. (Florence, Italy (IEPC) 2007) (http://electricrocket.org/IEPC/IEPC-2007-072.pdf)
|
[14] |
Feili D et al 2009 μNRIT-2.5-a new optimized microthruster of Giessen university Proc. 31th Int. Electric Propulsion Conf.(Michigan, USA (IEPC) 2015) (http://electricrocket.org/IEPC/IEPC-2009-174.pdf)
|
1. | Cui, Y., Ren, J., Wu, K. et al. Modelling the effect of deposited grid material on the power coupling of radio frequency ion thrusters. Journal of Electric Propulsion, 2025, 4(1): 2. DOI:10.1007/s44205-025-00101-9 | |
2. | Levchenko, I., Goebel, D., Pedrini, D. et al. Recent innovations to advance space electric propulsion technologies. Progress in Aerospace Sciences, 2025. DOI:10.1016/j.paerosci.2023.100900 | |
3. | Saifutdinova, A.A., Makushev, A.A., Gatiyatullin, F.R. et al. Simulation of the Plasma Parameters Dynamics in Iodine in an Electric Rocket Engine based on ICP Discharge. High Energy Chemistry, 2024, 58(Suppl 2): S215-S224. DOI:10.1134/S0018143924700899 | |
4. | Saifutdinova, A.A., Makushev, A.A., Sysoev, S.S. et al. Parametric Analysis of Plasma-Chemical Processes in Electrodeless RF and Microwave Discharges in Iodine Vapor. High Energy Chemistry, 2024, 58(5): 575-582. DOI:10.1134/S0018143924700486 | |
5. | Xu, Z., Wang, P., Cai, D. et al. Performance investigation of a low-power Hall thruster fed on iodine propellant. Plasma Science and Technology, 2024, 26(6): 065501. DOI:10.1088/2058-6272/ad240e | |
6. | Ma, L., He, J., Luo, J. et al. Research Progress of Radio Frequency Ion Thruster | [射频离子推力器研究进展]. Journal of Deep Space Exploration, 2024, 11(2): 111-123. DOI:10.15982/j.issn.2096-9287.2024.20230036 | |
7. | Shu, M., Wang, G., Xu, Z. et al. Simulation Study on Discharge Characteristics of Radio Frequency Ion Thruster with Iodine Working Medium | [碘工质射频离子推力器放电特性仿真研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2024, 44(2): 125-131. DOI:10.13922/j.cnki.cjvst.202307002 | |
8. | Li, X., Zeng, M., Liu, H. et al. Iodine electron cyclotron resonance plasma source for electric propulsion | [应用于电推进的碘工质电子回旋共振等离子体源]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(22): 225202. DOI:10.7498/aps.72.20230785 | |
9. | Lafleur, T., Habl, L., Rossi, E.Z. et al. Development and validation of an iodine plasma model for gridded ion thrusters. Plasma Sources Science and Technology, 2022, 31(11): 114001. DOI:10.1088/1361-6595/ac9ad7 | |
10. | Ye, Z.-W., Wang, P.-Y., Hua, Z.-W. et al. Feeding Design and Experimental Study of Iodine Electric Propulsion System | [碘工质电推进系统的储供设计及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(9): 21012. DOI:10.13675/j.cnki.tjjs.210125 | |
11. | Esteves, B., Marmuse, F., Drag, C. et al. Charged-particles measurements in low-pressure iodine plasmas used for electric propulsion. Plasma Sources Science and Technology, 2022, 31(8): 085007. DOI:10.1088/1361-6595/ac8288 | |
12. | Hua, Z., Wang, P., Ning, Z. et al. Early experimental investigation of the C12A7 hollow cathode fed on iodine. Plasma Science and Technology, 2022, 24(7): 074004. DOI:10.1088/2058-6272/ac4fb4 | |
13. | Xu, Z., Tian, L., Ye, Z. et al. Design and Experimental Research on Principle Prototype of Iodine Hall Thruster | [碘工质霍尔推力器原理样机设计与实验研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2022, 42(6): 456-461. DOI:10.13922/j.cnki.cjvst.202112003 | |
14. | Vavilov, I.S., Fedyanin, V.V., Yachmenev, P.S. et al. Determination of the parameters of the microwave ion thruster by the calorimetric method. Journal of Physics: Conference Series, 2022, 2182(1): 012067. DOI:10.1088/1742-6596/2182/1/012067 | |
15. | Ashby, J., Rosset, S., Henke, E.F.M. et al. One Soft Step: Bio-Inspired Artificial Muscle Mechanisms for Space Applications. Frontiers in Robotics and AI, 2022. DOI:10.3389/frobt.2021.792831 | |
16. | ZHANG, X., ZHANG, Z., JIA, S. et al. Influence of anode temperature on ignition performance of the IRIT4-2D iodine-fueled radio frequency ion thruster. Plasma Science and Technology, 2022, 24(1): 015506. DOI:10.1088/2058-6272/ac34e6 | |
17. | Levko, D., Raja, L.L. Fluid modeling of inductively coupled iodine plasma for electric propulsion conditions. Journal of Applied Physics, 2021, 130(17): 173302. DOI:10.1063/5.0063578 | |
18. | O’reilly, D., Herdrich, G., Kavanagh, D.F. Electric propulsion methods for small satellites: A review. Aerospace, 2021, 8(1): 1-30. DOI:10.3390/aerospace8010022 |