Advanced Search+
Xuwei HUANG (黄旭炜), Zi'an DING (丁梓桉), Tao LIU (刘涛), Qingmin LI (李庆民), Zhongdong WANG (王忠东). Correlation between surface charge and creepage discharge on polymeric dielectrics under high-frequency high-voltage stress[J]. Plasma Science and Technology, 2020, 22(8): 85505-085505. DOI: 10.1088/2058-6272/ab8c33
Citation: Xuwei HUANG (黄旭炜), Zi'an DING (丁梓桉), Tao LIU (刘涛), Qingmin LI (李庆民), Zhongdong WANG (王忠东). Correlation between surface charge and creepage discharge on polymeric dielectrics under high-frequency high-voltage stress[J]. Plasma Science and Technology, 2020, 22(8): 85505-085505. DOI: 10.1088/2058-6272/ab8c33

Correlation between surface charge and creepage discharge on polymeric dielectrics under high-frequency high-voltage stress

  • In the present work, creepage discharge characteristics, i.e. amplitudes, phases, and repetitiveness, and surface charge dynamic behaviors under a 20 kHz high-frequency sinusoidal waveform high-voltage electrical stress were captured in a discharge chamber with temperature and humidity control. The results showed that the creepage discharges mostly occurred in the positive half phase, whose maximum amplitude increased with the development of discharge. The inception voltage of the creepage discharge is independent of the frequency of the external electrical stress. Once the discharge occurred, there were a large number of positive and negative particles ionized by a high electric field. Because of the much higher velocity of electrons than positive ions, the energetic discharge-produced electrons are likely to disperse away along the surface and be accumulated through adsorption, collision, and reactions. Moreover, the positive ions join the high-conductive discharge channel and disappear though the ground electrode. Thus, after high-frequency creepage discharge, only negative charges remained on the dielectric surface, as measured. Particularly, the creepage discharges mostly occurred in the positive half phase, owing to the reverse electric field induced by the accumulated negative charges. With the development of creepage discharge, some large-amplitude discharges began to occur in the positive-peak-phase region. The research concluded that the synergistic effect of negative surface charges and large-amplitude discharges eroded the dielectrics and excited the streamer to creep toward the ground electrode until flashover along the surface. Therefore, the correlation between high-frequency creepage discharge and surface charge is preliminarily revealed.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return