Advanced Search+
Danyang WANG (王丹杨), Na XIE (谢娜), Lin WANG (王琳), Peng WANG (汪鹏), Yanping ZUO (左艳萍), Chengfang TANG (唐成芳), Xinyang MA (马新扬), Wen XU (徐文), Fei LIU (刘飞), Qinhong WANG (王钦鸿). In vitro study of nonthermal atmospheric pressure plasma in improving the durability of the dentin–adhesive interface with an etch-and-rinse system[J]. Plasma Science and Technology, 2020, 22(12): 125501. DOI: 10.1088/2058-6272/aba3be
Citation: Danyang WANG (王丹杨), Na XIE (谢娜), Lin WANG (王琳), Peng WANG (汪鹏), Yanping ZUO (左艳萍), Chengfang TANG (唐成芳), Xinyang MA (马新扬), Wen XU (徐文), Fei LIU (刘飞), Qinhong WANG (王钦鸿). In vitro study of nonthermal atmospheric pressure plasma in improving the durability of the dentin–adhesive interface with an etch-and-rinse system[J]. Plasma Science and Technology, 2020, 22(12): 125501. DOI: 10.1088/2058-6272/aba3be

In vitro study of nonthermal atmospheric pressure plasma in improving the durability of the dentin–adhesive interface with an etch-and-rinse system

Funds: This work was supported by grants from National Natural Science Foundation of China (Nos. 81701014, 81801310, 31700076), the Basic Research of Natural Science Project funded by the Department of Science and Technology of Shaanxi Province (No. 2017JM8038), and the Science and Technology Project funded by the Science and Technology Bureau of Weiyang District, Xi’an city (No. 201846).
More Information
  • Received Date: March 19, 2020
  • Revised Date: July 05, 2020
  • Accepted Date: July 06, 2020
  • In this study, we employed a nonthermal atmospheric pressure plasma (NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we assessed the degradation resistance of plasma-treated collagen under a sodium hypochlorite (NaClO) challenge. We assessed the beneficial effect of NTAPP treatment on the acid-etched dentin–bonding interface by testing the micro-tensile bond strength and examining the morphology. We found that the immediate bonding strength of the dentin significantly increased after NTAPP treatment. Compared with the control group, NTAPP resulted in a more prominent effect on the bonding durability of the dentin–adhesive interface after treatment for 5 or 10 s. Simultaneously, the mechanical strength of dentin collagen under the NaClO challenge was improved. Our results indicate that, in optimal conditions, NTAPP could be a promising method to protect dentin collagen and to improve the bonding durability between dentin and etch-and-rinse adhesives.
  • [1]
    Caron C et al 1998 Matrix Biol. 17 50l
    [2]
    Zhang L et al 2014 Dent. Mater. 30 1245
    [3]
    Zhang S C and Kern M 2009 Int. J. Oral Sci. 1 163
    [4]
    Breschi L et al 2008 Dent. Mater. 24 90
    [5]
    Liu Y et al 2011 J. Dent. Res. 90 953
    [6]
    Ritts A C et al 2010 Eur. J. Oral Sci. 118 510
    [7]
    Zhu X M et al 2018 Dent. Mater J. 37 798
    [8]
    Dong X Q et al 2015 Clin. Plasma Med. 3 10
    [9]
    Ayres A P et al 2018 Oper. Dent. 43 E288
    [10]
    Chen M S et al 2014 Dent. Mater. 30 1369
    [11]
    Li Y Y et al 2018 J. Adhes. Dent. 20 249
    [12]
    Amaral F L B et al 2007 J. Esthet. Restor. Dent. 19 340
    [13]
    Fang M et al 2012 J. Dent. 40 458
    [14]
    Scherrer S S, Cesar P S and Swain M V 2010 Dent. Mater.26 e78
    [15]
    Pierdzioch P et al 2016 Clin. Oral Investig. 20 2429
    [16]
    Fridman G et al 2008 Plasma Processes Polym. 5 503
    [17]
    Xiong Z L, Lu X P and Cao Y G 2011 Sci. Sin. Technol. 41 1279 (in Chinese)
    [18]
    Nam S H et al 2013 J. Appl. Oral Sci. 21 265
    [19]
    Pan J et al 2013 J. Endod. 39 105
    [20]
    Lee J H et al 2017 Dent. Mater. 33 257
    [21]
    Han G J et al 2014 Eur. J. Oral Sci. 122 417
    [22]
    Ayres A P et al 2018 Eur. J. Oral Sci. 126 53
    [23]
    Zhu X M et al 2018 Plasma Sci. Technol. 20 044010
    [24]
    Chen M S et al 2013 Dent. Mater. 29 871
    [25]
    Zhang Y, Yu Q S and Wang Y 2014 J. Dent. 42 1033
    [26]
    Habelitz S et al 2002 J. Struct. Biol. 138 227
    [27]
    Liguori A et al 2016 Sci. Rep. 6 38542
    [28]
    Prasertsung I, Damrongsakkul S and Saito N 2013 Plasma Processes Polym. 10 792
    [29]
    Otoni C G et al 2012 J. Food. Sci. 77 E215
    [30]
    Ozeki M and Tabata Y 2005 J. Biomater. Sci. Polym. Ed.16 549
    [31]
    Fujitsu M, Hattori M and Tamura T 1997 Colloid Polym. Sci.275 67
    [32]
    Wang Y and Liang Y H 2017 J. Peking Univ. (Health Sci.) 49 105 (in Chinese)
    [33]
    Hwang Y J and Lyubovitsky J G 2013 Biopolymers 99 349
    [34]
    Armstrong S R et al 2008 J. Dent. 36 8
    [35]
    Wang D Y et al 2019 J. Shanxi. Med. Univ. 50 1140 (in Chinese)
    [36]
    Dong X Q et al 2013 Eur. J. Oral Sci. 121 355
  • Related Articles

    [1]Huihui WANG (王慧慧), Zun ZHANG (张尊), Kaiyi YANG (杨凯翼), Chang TAN (谭畅), Ruilin CUI (崔瑞林), Jiting OUYANG (欧阳吉庭). Axial profiles of argon helicon plasma by optical emission spectroscope and Langmuir probe[J]. Plasma Science and Technology, 2019, 21(7): 74009-074009. DOI: 10.1088/2058-6272/ab175b
    [2]Shuichi SATO, Hiromu KAWANA, Tatsushi FUJIMINE, Mikio OHUCHI. Frequency dependence of electron temperature in hollow cathode-type discharge as measured by several different floating probe methods[J]. Plasma Science and Technology, 2018, 20(8): 85405-085405. DOI: 10.1088/2058-6272/aabfcd
    [3]Jianquan LI (李建泉), Wenqi LU (陆文琪), Jun XU (徐军), Fei GAO (高飞), Younian WANG (王友年). Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements[J]. Plasma Science and Technology, 2018, 20(2): 24002-024002. DOI: 10.1088/2058-6272/aa97cd
    [4]Satoshi NODOMI, Shuichi SATO, Mikio OHUCHI. Electron Temperature Measurement by Floating Probe Method Using AC Voltage[J]. Plasma Science and Technology, 2016, 18(11): 1089-1094. DOI: 10.1088/1009-0630/18/11/06
    [5]BAI Yujing (白玉静), LI Jianquan (李建泉), XU Jun (徐军), LU Wenqi (陆文琪), WANG Younian (王友年), DING Wanyu (丁万昱 ). Improvement of the Harmonic Technique of Probe for Measurements of Electron Temperature and Ion Density[J]. Plasma Science and Technology, 2016, 18(1): 58-61. DOI: 10.1088/1009-0630/18/1/10
    [6]REN Junxue(任军学), John L. POLANSKY, Joseph WANG. Analysis of the Anomalous Phenomenon in the Retarding Potential Analyzer Measurements[J]. Plasma Science and Technology, 2014, 16(11): 1042-1049. DOI: 10.1088/1009-0630/16/11/08
    [7]Djelloul MENDIL, Hadj LAHMAR, Laifa BOUFENDI. Spatial Evolution Study of EEDFs and Plasma Parameters in RF Stochastic Regime by Langmuir Probe[J]. Plasma Science and Technology, 2014, 16(9): 837-842. DOI: 10.1088/1009-0630/16/9/06
    [8]A. RASHIDI, S. SHAHIDI, M. GHORANNEVISS, S. DALALSHARIFI, J. WIENER. Effect of Plasma on the Zeta Potential of Cotton Fabrics[J]. Plasma Science and Technology, 2013, 15(5): 455-458. DOI: 10.1088/1009-0630/15/5/12
    [9]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
    [10]K. HANADA, H. ZUSHI, H. IDEI, K. NAKAMURA, M. ISHIGURO, S. TASHIMA, E. I. KALINNIKOVA, M. SAKAMOTO, M. HASEGAWA, A. FUJISAWA, A. HIGASHIJIMA, S. KAWASAKI, H. NAKASHIMA, H. LIU, O. MITARAI, T. MAEKAWA. Non-inductive start up of QUEST plasma by RF power[J]. Plasma Science and Technology, 2011, 13(3): 307-311.
  • Cited by

    Periodical cited type(6)

    1. Liziakin, G.D., Gavrikov, A.V., Kuzmichev, S.D. et al. Generation of a radial electric field in a cylindrical plasma column with an axial magnetic field. Physics-Uspekhi, 2024, 67(5): 464-486. DOI:10.3367/UFNe.2023.12.039622
    2. Oiler, A.P., Usmanov, R.A., Antonov, N.N. et al. Increasing the Efficiency of Plasma Mass Separation by Optimizing the Electric Potential. Plasma Physics Reports, 2024, 50(5): 588-596. DOI:10.1134/S1063780X24600579
    3. Valinurov, M.A., Gavrikov, A.V., Liziakin, G.D. et al. Plasma Potential Fluctuations in a Reflex Discharge with Thermionic Cathode. Plasma Physics Reports, 2023, 49(5): 649-655. DOI:10.1134/S1063780X22601766
    4. Antonov, N.N., Liziakin, G.D., Vetrova, S.B. et al. Transformation of Condensed Matter into a Low-Temperature Plasma Flow for Problems of Plasma Mass Separation with a Potential Well. Plasma Physics Reports, 2023, 49(5): 617-621. DOI:10.1134/S1063780X22601754
    5. Liziakin, G., Antonov, N., Smirnov, V.S. et al. Plasma mass separation in configuration with potential well. Journal of Physics D: Applied Physics, 2021, 54(41): 414005. DOI:10.1088/1361-6463/ac128e
    6. Liziakin, G., Oiler, A., Gavrikov, A. et al. Radial distribution of the plasma potential in a cylindrical plasma column with a longitudinal magnetic field. Journal of Plasma Physics, 2021, 87(4): 905870414. DOI:10.1017/S0022377821000829

    Other cited types(0)

Catalog

    Article views PDF downloads Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return