Advanced Search+
Ting WU (吴婷), Min XU (许敏), Lin NIE (聂林), Yi YU (余羿), Jianqiang XU (许健强), Ting LONG (龙婷), Yu HE (何钰), Jun CHENG (程钧), Longwen YAN (严龙文), Zhihui HUANG (黄治辉), Rui KE (柯锐), Peng SHI (石鹏), Shuo WANG (王硕), Bing LIU (刘兵). Effect of edge turbulent transport on scrape-off layer width on HL-2A tokamak[J]. Plasma Science and Technology, 2021, 23(2): 25101-025101. DOI: 10.1088/2058-6272/abd6b7
Citation: Ting WU (吴婷), Min XU (许敏), Lin NIE (聂林), Yi YU (余羿), Jianqiang XU (许健强), Ting LONG (龙婷), Yu HE (何钰), Jun CHENG (程钧), Longwen YAN (严龙文), Zhihui HUANG (黄治辉), Rui KE (柯锐), Peng SHI (石鹏), Shuo WANG (王硕), Bing LIU (刘兵). Effect of edge turbulent transport on scrape-off layer width on HL-2A tokamak[J]. Plasma Science and Technology, 2021, 23(2): 25101-025101. DOI: 10.1088/2058-6272/abd6b7

Effect of edge turbulent transport on scrape-off layer width on HL-2A tokamak

Funds: This work is supported by National Natural Science Foundation of China (Nos. 11875124, U1867222, 11575055, 11705052, 11875020 and 11705151) and National Key Research and Development Program of China (Nos. 2018YFE0309103, 2018YFE0303102, 2017YFE0300405 and 2017YFE0301203).
More Information
  • Received Date: September 10, 2020
  • Revised Date: December 21, 2020
  • Accepted Date: December 23, 2020
  • Effect of edge turbulent transport on scrape-off layer (SOL) width has been investigated in Ohmically heated L-mode plasma under limiter configurations on HL-2A tokamak. It has been found that SOL width is doubled when plasma current decreases about 20%. With larger plasma current, E × B shear is stronger and has greater suppression effect on edge turbulent transport. SOL width is larger when power of relative density fluctuation level in the edge region is larger. It is concluded that edge turbulent transport plays a significant role on SOL width. These experimental findings may provide a better understanding and controlling of power exhaust for present and future fusion devices.
  • [1]
    ITER Physics Basis 1999 Nucl. Fusion 39 2391
    [2]
    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol: Institute of Physics Publishing)
    [3]
    Goldston R J et al 2012 Nucl. Fusion 52 013009
    [4]
    Eich T et al 2013 Nucl. Fusion 53 093031
    [5]
    Connor J W et al 1999 Nucl. Fusion 39 169
    [6]
    Halpern F D et al 2013 Nucl. Fusion 53 122001
    [7]
    Myra J R et al 2015 Phys. Plasmas 22 042516
    [8]
    Fedorczak N et al 2017 Nucl. Mater. Energy 12 838
    [9]
    Fedorczak N et al 2019 Nucl. Mater. Energy 19 433
    [10]
    Militello F et al 2013 Plasma Phys. Control. Fusion 55 074010
    [11]
    Olsen J et al 2018 Plasma Phys. Control. Fusion 60 085018
    [12]
    Chang C et al 2017 Nucl. Fusion 57 116023
    [13]
    Chen B et al 2017 Nucl. Fusion 57 116025
    [14]
    Chen B et al 2018 Phys. Plasmas 25 055905
    [15]
    Xu X Q et al 2019 Nucl. Fusion 59 126039
    [16]
    Li Z et al 2019 Nucl. Fusion 59 046014
    [17]
    Yang Q Q et al 2015 Phys. Plasmas 22 062504
    [18]
    Grenfell G et al 2019 Nucl. Fusion 59 016018
    [19]
    Grenfell G et al 2020 Nucl. Fusion 60 014001
    [20]
    Eich T et al 2020 Nucl. Fusion 60 056016
    [21]
    Xu M et al 2019 Nucl. Fusion 59 112017
    [22]
    Wu T et al 2019 Plasma Sci. Technol. 21 125102
    [23]
    Tsui1 H et al 1992 Rev. Sci. Instrum. 63 4608
    [24]
    Stangeby P C et al 2010 Nucl. Fusion 50 125003
    [25]
    Garbet X et al 1994 Nucl. Fusion 34 963
    [26]
    Gürcan Ö D et al 2005 Phys. Plasmas 12 032303
    [27]
    Yagi M et al 2006 Plasma Phys. Control. Fusion 48 A409
    [28]
    Gürcan Ö D et al 2006 Phys. Rev. Lett. 97 024502
    [29]
    Wang W X et al 2007 Phys. Plasmas 14 072306
    [30]
    Manz P et al 2015 Phys. Plasmas 22 022308
    [31]
    Carralero D et al 2015 Phys. Rev. Lett. 115 215002
    [32]
    Nespoli F et al 2015 J. Nucl. Mater. 463 393–6
  • Related Articles

    [1]Ting WU, Lin NIE, Yi YU, Jinming GAO, Junyan LI, Huicong MA, Jie WEN, Rui KE, Na WU, Zhihui HUANG, Liang LIU, Dianlin ZHENG, Kaiyang YI, Xiaoyan GAO, Weice WANG, Jun CHENG, Longwen YAN, Laizhong CAI, Zhanhui WANG, Min XU. Evolution of edge turbulent transport induced by L-mode detachment in the HL-2A tokamak[J]. Plasma Science and Technology, 2023, 25(1): 015102. DOI: 10.1088/2058-6272/ac82df
    [2]Kaijun ZHAO, Yoshihiko NAGASHIMA, Zhibin GUO, Patrick H DIAMOND, Jiaqi DONG, Longwen YAN, Kimitaka ITOH, Sanae-I ITOH, Xiaobo LI, Jiquan LI, Akihide FUJISAWA, Shigeru INAGAKI, Jun CHENG, Jianqiang XU, Yusuke KOSUGA, Makoto SASAKI, Zhengxiong WANG, Huaiqiang ZHANG, Yuqian CHEN, Xiaogang CAO, Deliang YU, Yi LIU, Xianming SONG, Fan XIA, Shuo WANG. Effects of sawtooth heat pulses on edge flows and turbulence in a tokamak plasma[J]. Plasma Science and Technology, 2023, 25(1): 015101. DOI: 10.1088/2058-6272/ac7c60
    [3]Xueyun WANG (王雪韵), Zhenyu ZHOU (周振宇), Zhuoyi LI (李卓懿), Bo LI (李博). Dynamical evolution of cross phase of edge fluctuations and transport bifurcation[J]. Plasma Science and Technology, 2021, 23(4): 45102-045102. DOI: 10.1088/2058-6272/abea6f
    [4]A KRÄMER-FLECKEN, X HAN, M OTTE, G ANDA, S A BOZHENKOV, D DUNAI, G FUCHERT, J GEIGER, O GRULKE, E PASCH, E R SCOTT, E TRIER, M VÉCSEI, T WINDISCH, S ZOLETNIK, the W7-X Team. Investigation of turbulence rotation in the SOL and plasma edge of W7-X for different magnetic configurations[J]. Plasma Science and Technology, 2020, 22(6): 64004-064004. DOI: 10.1088/2058-6272/ab770c
    [5]Ting WU (吴婷), Lin NIE (聂林), Min XU (许敏), Jie YANG (阳杰), Zhipeng CHEN (陈志鹏), Yuejiang SHI (石跃江), Nengchao WANG (王能超), Da LI (李达), Rui KE (柯锐), Yi YU (余羿), Shaobo GONG (龚少博), Ting LONG (龙婷), Yihang CHEN (陈逸航), Bing LIU (刘兵), J-TEXT Team. Effect of resonant magnetic perturbation on boundary plasma turbulence and transport on J-TEXT tokamak[J]. Plasma Science and Technology, 2019, 21(12): 125102. DOI: 10.1088/2058-6272/ab4369
    [6]GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03
    [7]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [8]SUN Yue (孙岳), CHEN Zhipeng (陈志鹏), WANG Zhijiang (王之江), ZHU Mengzhou (朱孟周), ZHUANG Ge (庄革), J-TEXT team. Experimental Studies of Electrostatic Fluctuations and Turbulent Transport in the Boundary of J-TEXT Tokamak Using Reciprocating Probe[J]. Plasma Science and Technology, 2012, 14(12): 1041-1047. DOI: 10.1088/1009-0630/14/12/02
    [9]Naohiro KASUYA, Seiya NISHIMURA, Masatoshi YAGI, Kimitaka ITOH, Sanae-I ITOH. Heavy Ion Beam Probe Measurement in Turbulence Diagnostic Simulator[J]. Plasma Science and Technology, 2011, 13(3): 326-331.
    [10]LI Jiquan, Y. KISHIMOTO. Wave-Number Spectral Characteristics of Drift Wave Micro-Turbulence with Large-Scale Structures[J]. Plasma Science and Technology, 2011, 13(3): 297-301.
  • Cited by

    Periodical cited type(14)

    1. Tan, Q., Ye, H., Gong, X. et al. Effects of N/Ne impurity seeding on the divertor asymmetry in HL-2A tokamak. Nuclear Fusion, 2025, 65(2): 026032. DOI:10.1088/1741-4326/ada2aa
    2. Khabanov, F.O., Hong, R., Diamond, P.H. et al. Density fluctuation statistics and turbulence spreading at the edge of L-mode plasmas. Nuclear Fusion, 2024, 64(12): 126056. DOI:10.1088/1741-4326/ad820d
    3. Li, Z., Chen, X., Diamond, P.H. et al. How turbulence spreading improves power handling in quiescent high confinement fusion plasmas. Communications Physics, 2024, 7(1): 96. DOI:10.1038/s42005-024-01590-0
    4. Ji, X., Guo, Z., Zhang, Y. Multi-field coupling in the scrape-off layer of tokamak plasma. Nuclear Fusion, 2024, 64(10): 106032. DOI:10.1088/1741-4326/ad70ca
    5. Long, T., Diamond, P.H., Ke, R. et al. On how structures convey non-diffusive turbulence spreading. Nuclear Fusion, 2024, 64(6): 064002. DOI:10.1088/1741-4326/ad40c0
    6. Li, N., Xu, X., Diamond, P. et al. How fluctuation intensity flux drives SOL expansion. Nuclear Fusion, 2023, 63(12): 124005. DOI:10.1088/1741-4326/ad0599
    7. Wu, T., Diamond, P.H., Nie, L. et al. How turbulent transport broadens the heat flux width: local SOL production or edge turbulence spreading?. Nuclear Fusion, 2023, 63(12): 126001. DOI:10.1088/1741-4326/acf5d9
    8. Wang, Z., Qiu, Z., Wang, L. et al. Summary of the 10th Conference on Magnetically Confined Fusion Theory and Simulation (CMCFTS). Plasma Science and Technology, 2023, 25(8): 081001. DOI:10.1088/2058-6272/acc14d
    9. Wu, M.J., Yang, X.Y., Xu, T.C. et al. Calibration and test of CsI scintillator ion detection system for tokamak magnetic field diagnosis based on laser-driven ion-beam trace probe (LITP). Nuclear Fusion, 2022, 62(10): 106028. DOI:10.1088/1741-4326/ac8ca0
    10. Yan, L., Gao, J., Miao, X. et al. Scaling Laws of Heat Flux Width in the HL-2A Closed Divertor Tokamak. Chinese Physics Letters, 2022, 39(11): 115202. DOI:10.1088/0256-307X/39/11/115202
    11. Chu, X., Diamond, P.H., Guo, Z. SOL width broadening by spreading of pedestal turbulence. Nuclear Fusion, 2022, 62(6): 066021. DOI:10.1088/1741-4326/ac4f9f
    12. Huang, Z., Cheng, J., Wu, N. et al. Upgrade of an integrated Langmuir probe system on the closed divertor target plates in the HL-2A tokamak. Plasma Science and Technology, 2022, 24(5): 054002. DOI:10.1088/2058-6272/ac496c
    13. Chen, W., Ma, Z., Zhang, H. et al. Free-boundary plasma equilibria with toroidal plasma flows. Plasma Science and Technology, 2022, 24(3): 035101. DOI:10.1088/2058-6272/ac48de
    14. Ida, K., McDermott, R.M., Holland, C. et al. Joint meeting of 9th Asia Pacific-Transport Working Group (APTWG) & EU-US Transport Task Force (TTF) workshop. Nuclear Fusion, 2022, 62(3): 037001. DOI:10.1088/1741-4326/ac3f19

    Other cited types(0)

Catalog

    Article views (174) PDF downloads (439) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return