Advanced Search+
Wei QI (齐巍), Qiuyun WANG (王秋云), Junfeng SHAO (邵俊峰), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas[J]. Plasma Science and Technology, 2021, 23(4): 45501-045501. DOI: 10.1088/2058-6272/abe52c
Citation: Wei QI (齐巍), Qiuyun WANG (王秋云), Junfeng SHAO (邵俊峰), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas[J]. Plasma Science and Technology, 2021, 23(4): 45501-045501. DOI: 10.1088/2058-6272/abe52c

Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas

Funds: We acknowledge the support by Scientific and Technological Research Project of the Education Department of Jilin
Province, China (No. JJKH20200937KJ), and National Natural Science Foundation of China (Nos. 11674128, 11674124, and 11974138).
More Information
  • Received Date: December 29, 2020
  • Revised Date: February 06, 2021
  • Accepted Date: February 09, 2021
  • The influence of the target temperature on the molecular emission of femtosecond laser-induced breakdown spectroscopy (LIBS) was investigated experimentally. An Al target was ablated to produce laser-induced plasma. The Al target was uniformly heated to a maximum of 250 °C. The measured molecular emission was AlO (Δν=0) from the femtosecond LIBS of the Al target. The measurements indicated that the molecular emission of AlO increased as the temperature of the Al target increased. In addition, a two-temperature model was used to simulate the evolution of the electron and lattice temperature of the Al target with different initial temperatures. The simulated results showed that the electron and lattice temperatures of Al irradiated by the femtosecond laser increased as the initial temperature of the Al target increased; also, the simulated ablated depth increased. Therefore, an increase in the initial Al target temperature resulted in an enhancement in the spectral signal of AlO from the femtosecond LIBS of Al, which was directly related to the increase in the size of the ablated crater. The study suggested that increasing the temperature of the target improves the intensity of molecular emission in femtosecond LIBS.
  • [1]
    Wang Z et al 2014 Front. Phys. 9 419
    [2]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol.17 617
    [3]
    Wang Z Z et al 2016 Front. Phys. 11 114213
    [4]
    Hou Z Y et al 2020 Plasma Sci. Technol. 22 070101
    [5]
    Palanco S, Conesa S and Laserna J J 2004 J. Anal. At.Spectrom. 19 462
    [6]
    Wu D et al 2018 Appl. Spectrosc. 72 225
    [7]
    Chen A M et al 2015 Phys. Plasmas 22 033301
    [8]
    Yin H L et al 2015 J. Anal. At. Spectrom. 30 922
    [9]
    Wang Y et al 2016 Phys. Plasmas 23 113105
    [10]
    Chen A M et al 2012 Phys. Plasmas 19 073302
    [11]
    Zhang D et al 2020 Optik 202 163511
    [12]
    Shao J F et al 2020 Optik 207 164448
    [13]
    Yang L et al 2020 Chin. Phys. B 29 065203
    [14]
    Gaft M et al 2020 Spectrochim. Acta Part B: At. Spectrosc. 173 105989
    [15]
    Guo K M, Chen A M and Gao X 2020 Optik 208 164067
    [16]
    Moros J and Laserna J 2019 Appl. Spectrosc. 73 963
    [17]
    Zhao Y L et al 2020 J. Hazard. Mater. 393 122396
    [18]
    Trautner S et al 2017 Spectrochim. Acta Part A: Mol. Biomol.Spectrosc. 174 331
    [19]
    De Lucia F C and Gottfried J L 2011 Spectrochim. Acta Part B: At. Spectrosc. 66 122
    [20]
    Samuels A C et al 2003 Appl. Opt. 42 6205
    [21]
    Harilal S S et al 2014 Appl. Phys. A 117 319
    [22]
    Freeman J R et al 2013 Spectrochim. Acta Part B: At.Spectrosc. 87 43
    [23]
    Wang Y et al 2020 Phys. Plasmas 27 023507
    [24]
    Wang Q Y et al 2020 Opt. Laser Technol. 121 105773
    [25]
    Labutin T A et al 2016 J. Anal. At. Spectrom. 31 90
    [26]
    Wang X W et al 2017 Phys. Plasmas 24 103305
    [27]
    Yang D P et al 2017 Acta Phys. Sin. 66 115201 (in Chinese)
    [28]
    Shao J F et al 2020 Optik 220 165137
    [29]
    Wang Q Y et al 2020 Opt. Laser Technol. 122 105862
    [30]
    Wang Q Y et al 2019 Phys. Plasmas 26 073302
    [31]
    Serrano J, Moros J and Javier L 2016 Phys. Chem. Chem.Phys. 18 2398
    [32]
    Kalam S A et al 2017 J. Anal. At. Spectrom. 32 1535
    [33]
    Harilal S S et al 2016 J. Anal. At. Spectrom. 31 1192
    [34]
    Li Y C et al 2018 Appl. Spectrosc. Rev. 53 1
    [35]
    Shen J et al 2015 Plasma Sci. Technol. 17 147
    [36]
    Sun D X et al 2014 Plasma Sci. Technol. 16 374
    [37]
    Lin X M, Li H and Yao Q H 2015 Plasma Sci. Technol. 17 953
    [38]
    Shen X K et al 2007 J. Appl. Phys. 102 093301
    [39]
    Wang Y et al 2016 J. Anal. At. Spectrom. 31 1974
    [40]
    Lu Y et al 2015 J. Anal. At. Spectrom. 30 2303
    [41]
    Pandey P K and Thareja R K 2013 Phys. Plasmas 20 022117
    [42]
    Liu L et al 2014 Opt. Express 22 7686
    [43]
    Liu L et al 2015 Opt. Express 23 15047
    [44]
    De Giacomo A et al 2013 Anal. Chem. 85 10180
    [45]
    Aguirre M A et al 2013 Spectrochim. Acta Part B: At.Spectrosc. 79–80 88
    [46]
    Zhou W D et al 2013 J. Anal. At. Spectrom. 28 702
    [47]
    Zhou W D et al 2010 Opt. Express 18 2573
    [48]
    Li K X et al 2010 Spectrochim. Acta Part B: At. Spectrosc.65 420
    [49]
    Eschlböck-Fuchs S et al 2013 Spectrochim. Acta Part B: At.Spectrosc. 87 36
    [50]
    Sanginés R, Sobral H and Alvarez-Zauco E 2012 Spectrochim.Acta Part B: At. Spectrosc. 68 40
    [51]
    Wang Y et al 2017 Phys. Plasmas 24 013301
    [52]
    Sanginés R, Sobral H and Alvarez-Zauco E 2012 Appl. Phys. B 108 867
    [53]
    Liu Y et al 2017 Plasma Sci. Technol. 19 125501
    [54]
    Shao J F et al 2020 Plasma Sci. Technol. 22 074001
    [55]
    Zhang D et al 2019 Plasma Sci. Technol. 21 034009
    [56]
    Wang Y et al 2019 Plasma Sci. Technol. 21 034013
    [57]
    Hai R et al 2019 J. Anal. At. Spectrom. 34 2378
    [58]
    Lednev V N et al 2019 J. Anal. At. Spectrom. 34 607
    [59]
    Tavassoli S H and Gragossian A 2009 Opt. Laser Technol.41 481
    [60]
    Guo J et al 2012 Opt. Commun. 285 1895
    [61]
    Li S C et al 2015 Appl. Surf. Sci. 355 681
    [62]
    Li S C et al 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 342 300
    [63]
    Kim J and Na S 2007 Opt. Laser Technol. 39 1443
    [64]
    Wang T F et al 2015 Phys. Plasmas 22 033106
    [65]
    Vial A and Laroche T 2008 Appl. Phys. B 93 139
    [66]
    Ren Y P, Chen J K and Zhang Y W 2011 J. Appl. Phys. 110 113102
    [67]
    Yang J, Zhao Y and Zhu X 2007 Appl. Phys. A 89 571
    [68]
    Sim H S et al 2010 Mater. Trans. 51 1156
    [69]
    Parigger C G et al 2015 Spectrochim. Acta Part B: At.Spectrosc. 107 132
    [70]
    Yang X et al 2019 Acta Phys. Sin. 68 065201 (in Chinese)
    [71]
    Xu W P et al 2019 J. Anal. At. Spectrom. 34 2288
    [72]
    Guo J et al 2018 J. Anal. At. Spectrom. 33 2116
    [73]
    Guo K M et al 2019 AIP Adv. 9 065214
    [74]
    Hu H F et al 2011 Chin. Phys. B 20 044204
    [75]
    Li Q et al 2011 Appl. Phys. A 105 125
  • Related Articles

    [1]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [2]Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783
    [3]Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841
    [4]Mingming SUN (孙明明), Yanhui JIA (贾艳辉), Yongjie HUANG (黄永杰), Juntai YANG (杨俊泰), Xiaodong WEN (温晓东), Meng WANG (王蒙). Study on the influence of three-grid assembly thermal deformation on breakdown times and an ion extraction process[J]. Plasma Science and Technology, 2018, 20(6): 65509-065509. DOI: 10.1088/2058-6272/aaad5d
    [5]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [6]LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d
    [7]Ying ZHAO (赵颖), Risheng YAO (姚日升), Yuedong MENG (孟月东), Jiaxing LI (李家星), Yiman JIANG (江贻满), Longwei CHEN (陈龙威). The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration[J]. Plasma Science and Technology, 2017, 19(3): 34001-034001. DOI: 10.1088/2058-6272/19/3/034001
    [8]CUI Xinglei (崔行磊), ZHOU Xue (周学), ZHAI Guofu (翟国富), PENG Xiyuan (彭喜元). Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model[J]. Plasma Science and Technology, 2016, 18(5): 512-519. DOI: 10.1088/1009-0630/18/5/12
    [9]NIU Chunping (纽春萍), DING Juwen (丁炬文), WU Yi (吴翊), YANG Fei (杨飞), DONG Delong (董得龙), FAN Xingyu (范星宇), RONG Mingzhe (荣命哲). Simulation and Experimental Analysis of Arc Motion Characteristics in Air Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 241-246. DOI: 10.1088/1009-0630/18/3/05
    [10]M’hammed ABBAOUI, Andr′e LEFORT, Erwann CARVOU, Damien SALLAIS, James Brian Alexander MITCHELL, Noureddine BEN JEMAA. Formation of a 40 A DC Current Arc During the Opening of Silver Contacts[J]. Plasma Science and Technology, 2014, 16(5): 471-478. DOI: 10.1088/1009-0630/16/5/06
  • Cited by

    Periodical cited type(12)

    1. Rizwan, M., Afgan, M.S., Saleem, S. et al. Double Pulse laser-induced breakdown spectroscopy (DP-LIBS): A Comprehensive technique Review. Spectrochimica Acta - Part B Atomic Spectroscopy, 2025. DOI:10.1016/j.sab.2025.107168
    2. Wang, Y., Gao, H., Hong, Y. et al. Influence of distance from lens to sample surface on spectral sensitivity of femtosecond laser-induced breakdown spectroscopy with NaCl water film. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.964140
    3. Wang, Q., Chen, A., Liu, Y. et al. Comparison of emission signals for femtosecond and nanosecond laser-ablated Cu plasmas by changing the distance from focusing-lens to target-surface at different target temperatures. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106302
    4. Wang, Q., Qi, H., Zeng, X. et al. Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas. Plasma Science and Technology, 2021, 23(11): 115504. DOI:10.1088/2058-6272/ac183b
    5. Liu, M., Chen, A., Chen, Y. et al. Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(7): 075501. DOI:10.1088/2058-6272/abf997
    6. Qi, W., Wang, Q., Shao, J. et al. Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas. Plasma Science and Technology, 2021, 23(4): 045501. DOI:10.1088/2058-6272/abe52c
    7. Wang, Y., Wang, Q., Chen, A. et al. Influence of sample temperature on nanosecond laser-induced Cu plasma spectra. Optik, 2021. DOI:10.1016/j.ijleo.2021.166338
    8. Li, Q., Chen, A., Zhang, D. et al. Time-resolved electron temperature and density of spark discharge assisted femtosecond laser-induced breakdown spectroscopy. Optik, 2021. DOI:10.1016/j.ijleo.2020.165812
    9. Shao, J., Guo, J., Wang, Q. et al. Influence of distance between focusing lens and sample surface on femtosecond laser-induced Cu plasma. Optik, 2020. DOI:10.1016/j.ijleo.2020.165137
    10. Yang, X., Chen, A., Li, S. et al. Effect of Parallel Plate Constraint on CN Molecular Spectra in Laser-Induced PMMA Plasma | [平行板约束对激光诱导PMMA等离子体中CN分子光谱的影响]. Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47(8): 0811002. DOI:10.3788/CJL202047.0811002
    11. Yang, L., Yang, L., Liu, M. et al. Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy. Chinese Physics B, 2020, 29(6): 065203. DOI:10.1088/1674-1056/ab84dc
    12. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (176) PDF downloads (182) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return