Advanced Search+
Hongyu DAI (戴宏宇), Lee LI (李黎), Shuai REN (任帅), Jingrun GUO (郭景润), Xin GONG (宫鑫), Anthony Bruce MURPHY. Effect of dilution gas composition on the evolution of graphite electrode characteristics in the spark gap switch[J]. Plasma Science and Technology, 2021, 23(6): 64009-064009. DOI: 10.1088/2058-6272/abf126
Citation: Hongyu DAI (戴宏宇), Lee LI (李黎), Shuai REN (任帅), Jingrun GUO (郭景润), Xin GONG (宫鑫), Anthony Bruce MURPHY. Effect of dilution gas composition on the evolution of graphite electrode characteristics in the spark gap switch[J]. Plasma Science and Technology, 2021, 23(6): 64009-064009. DOI: 10.1088/2058-6272/abf126

Effect of dilution gas composition on the evolution of graphite electrode characteristics in the spark gap switch

Funds: The study was supported by National Natural Science Foundation of China (Nos. 51777082 and 52077091), and Chinese Scholarship Council (No. 201906160101). The authors thank Huazhong University of Science and Technology Analytical and Testing Center for providing testing equipment.
More Information
  • Received Date: January 10, 2021
  • Revised Date: March 21, 2021
  • Accepted Date: March 22, 2021
  • As the widely implemented electrode material, graphite has the characteristic of sublimation by the thermal shock of the switching arc, and the produced carbon vapor is easy to condense into carbon powders and deposit in the switch. The impact of the type of dilution gas in a mixture of 20% oxygen and 80% dilution gas on the sublimation and oxidation characteristics of the graphite electrode is investigated. It is found that when nitrogen dilution gas was replaced by argon, the heat flux to the electrodes decreased, which led to a 63% reduction of graphite sublimation. At the same time, the cooling rate of the arc was slower in argon, which promotes oxidation of the carbon vapor. The residual solid carbon can be reduced by 70%–85% by using argon as the dilution gas. Consequently, it is demonstrated that the stability and working life of the switch could be increased by appropriate selection of the dilution gas.
  • [1]
    Li L et al 2011 IEEE Trans. Plasma Sci. 39 737
    [2]
    Li L et al 2013 IEEE Trans. Plasma Sci. 41 1260
    [3]
    Shan M L et al 2019 Plasma Sci. Technol. 21 074002
    [4]
    Arnold P A et al 2008 IEEE Trans. Plasma Sci. 36 383
    [5]
    Jackson G et al 1984 J. Appl. Phys. 55 262
    [6]
    Xiong J M et al 2018 Phys. Plasmas 25 032115
    [7]
    Yao X L, Zeng Z Z and Chen J L 2005 Plasma Sci. Technol.7 3157
    [8]
    Murphy A B et al 2009 J. Phys. D: Appl. Phys. 42 194006
    [9]
    Savvatimskiy A I 2005 Carbon 43 1115
    [10]
    Bundy F P 1989 Physica A 156 169
    [11]
    Donaldson A L et al 1986 IEEE Trans. Magn. 22 1441
    [12]
    Li L et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1307
    [13]
    Donaldson A L and Kristiansen M 1991 The erosion performance of graphite electrodes in high current, high coulomb, spark gaps 8th IEEE Int. Conf. on Pulsed Power (San Diego, CA, USA) (Piscataway, NJ: IEEE) p 874
    [14]
    Lefort A et al 1993 J. Phys. D: Appl. Phys. 26 1239
    [15]
    Affinito D, Bar-Avraham E and Fisher A 1979 IEEE Trans.Plasma Sci. 7 162
    [16]
    Donaldson A L et al 1984 IEEE Trans. Plasma Sci. 12 28
    [17]
    Vinaricky E and Behrens V 1998 Switching behavior of silver/ graphite contact material in different atmospheres with regard to contact erosion 44th IEEE Holm Conf. on Electrical Contacts (Arlington, VA, USA) (Piscataway, NJ:IEEE) p 292
    [18]
    Gordon L B et al 1982 IEEE Trans. Plasma Sci. 10 286
    [19]
    Boulos M I, Fauchais P and Pfender E 2013 Thermal Plasmas:Fundamentals and Applications (Heidelberg: Springer)
    [20]
    Murphy A B 2001 J. Phys. D: Appl. Phys. 34 R151
    [21]
    Nguyen D B and Lee W G 2016 RSC Adv. 6 26505
    [22]
    Zhang X X et al 2016 IEEE Trans. Dielectr. Electr. Insul.23 819
    [23]
    Roth J R 2001 Industrial Plasma Engineering: Volume 2:Applications to Nonthermal Plasma Processing (Boca Raton, FL: CRC Press)
    [24]
    Tanaka M et al 2008 Sci. Technol. Weld. Joining 13 225
    [25]
    Fetterman A J, Raitses Y and Keidar M 2008 Carbon 46 1322
    [26]
    Arora N and Sharma N N 2014 Diam. Relat. Mater. 50 135
    [27]
    Murphy A B et al 2009 J. Phys. D: Appl. Phys. 42 115205
    [28]
    Tanaka M and Lowke J J 2006 J. Phys. D: Appl. Phys. 40 R1
    [29]
    Dai H Y et al 2017 Phys. Plasmas 24 123512
    [30]
    Liu G et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1143
    [31]
    Chen D H et al 2015 IEEE Trans. Plasma Sci. 43 3419
    [32]
    Wang W Z et al 2011 Phys. Plasmas 18 113502
    [33]
    Goldstein H W 1964 J. Phys. Chem. 68 39
    [34]
    Zeng H et al 2012 Rev. Sci. Instrum. 83 013504
    [35]
    Haidar J 1996 Plasma Sources Sci. Technol. 5 748
    [36]
    Lowke J J, Morrow R and Haidar J 1997 J. Phys. D: Appl.Phys. 30 2033
    [37]
    Engel T G et al 1995 IEEE Trans. Magn. 31 709
    [38]
    Moore C E 1949 Atomic Energy Levels vol 1 (Washington,DC: National Bureau of Standards))
    [39]
    Chase M W 1998 NIST-JANAF Thermochemical Tables 4th edn (New York: American Institute of Physics)
    [40]
    Griem H R 1962 Phys. Rev. 128 997
    [41]
    Hirschfelder J O, Curtis C F and Bird R B 1964 Molecular Theory of Gases and Liquids 2nd edn (New York: Wiley)
    [42]
    Devoto R S 1967 Phys. Fluids 10 2105
    [43]
    Cram L E 1985 J. Phys. D: Appl. Phys. 18 401
    [44]
    Amakawa T et al 1998 J. Phys. D: Appl. Phys. 31 2826
    [45]
    Fabish T J and Schleifer D E 1984 Carbon 22 19
    [46]
    Dai H Y et al 2019 IEEE Trans. Dielectr. Electr. Insul. 26 492
  • Related Articles

    [1]Yanjun ZHAO, Guohua NI, Wei LIU, Hongmei SUN, Siyuan SUI, Dongdong LI, Huan ZHENG, Zhongyang MA, Chi ZHANG. Dynamic characteristics of multi-arc thermal plasma in four types of electrode configurations[J]. Plasma Science and Technology, 2022, 24(5): 055407. DOI: 10.1088/2058-6272/ac4ee7
    [2]Ronggang WANG (王荣刚), Qizheng JI (季启政), Tongkai ZHANG (张桐恺), Qing XIA (夏清), Yu ZHANG (张宇), Jiting OUYANG (欧阳吉庭). Discharge characteristics of a needle-to-plate electrode at a micro-scale gap[J]. Plasma Science and Technology, 2018, 20(5): 54017-054017. DOI: 10.1088/2058-6272/aaa436
    [3]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [4]Wei ZHONG (钟伟), AoXU (徐翱), Yunlong LIU (刘云龙), Lei CHEN (陈磊). Visualization of particulates distribution from electrode erosion[J]. Plasma Science and Technology, 2018, 20(2): 25502-025502. DOI: 10.1088/2058-6272/aa9327
    [5]Wenzheng LIU (刘文正), Tahan WANG (王踏寒), Xiaozhong CHEN (陈晓中), Chuanlong MA (马传龙). Characteristics and application of diffuse discharge of water electrode in air[J]. Plasma Science and Technology, 2018, 20(1): 14003-014003. DOI: 10.1088/2058-6272/aa8fc5
    [6]WANG Xiaoping(王小平), LI Zhongjian(李中坚), ZHANG Xingwang(张兴旺), LEI Lecheng(雷乐成). Characteristics of Electrode-Water-Electrode Discharge and its Application to Water Treatment[J]. Plasma Science and Technology, 2014, 16(5): 479-485. DOI: 10.1088/1009-0630/16/5/07
    [7]WANG Lijun(王立军), HUANG Xiaolong(黄小龙), JIA Shenli(贾申利), ZHOU Xin(周鑫), SHI Zongqian(史宗谦). Modeling and Simulation of Deflected Anode Erosion in Vacuum Arcs[J]. Plasma Science and Technology, 2014, 16(3): 226-231. DOI: 10.1088/1009-0630/16/3/10
    [8]LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09
    [9]LIU Xuandong (刘轩东), WANG Hu (王虎), LI Xiaoang (李晓昂), ZHANG Qiaogen (张乔根), et al.. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch[J]. Plasma Science and Technology, 2013, 15(8): 812-816. DOI: 10.1088/1009-0630/15/8/18
    [10]LIU Wenzheng (刘文正), ZHANG Dejin (张德金), KONG Fei (孔飞). The Impact of Electrode Configuration on Characteristics of Vacuum Discharge Plasma[J]. Plasma Science and Technology, 2012, 14(2): 122-128. DOI: 10.1088/1009-0630/14/2/08
  • Cited by

    Periodical cited type(5)

    1. Feng, L., Liu, S., Bu, Q. et al. Erosion of stainless steel electrodes in a high-repetition-rate gas spark switch. Journal of Physics: Conference Series, 2024, 2903(1): 012004. DOI:10.1088/1742-6596/2903/1/012004
    2. Dong, K., Wu, G., Qian, P. et al. Research on dynamic characteristics of arc under electrode relative motion. Plasma Science and Technology, 2023, 25(4): 045502. DOI:10.1088/2058-6272/ac9ddf
    3. Li, L.. High Current Pulsed Gas Gap Switch. Springer Series in Plasma Science and Technology, 2023. DOI:10.1007/978-981-99-1141-7_2
    4. Dong, K., Wu, G., Qian, P. et al. Research on Motion Characteristics of Arc at Low Air Pressure. 2023. DOI:10.1109/PandaFPE57779.2023.10140216
    5. Mei, D., Zhang, S., Tang, J. Special issue on selected papers from HVDP 2020. Plasma Science and Technology, 2021, 23(6): 060101. DOI:10.1088/2058-6272/ac02ab

    Other cited types(0)

Catalog

    Article views (124) PDF downloads (54) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return