Advanced Search+
Zhihang ZHAO (赵志航), Xinlao WEI (魏新劳), Shuang SONG (宋爽), Lin CUI (崔林), Kailun YANG (杨凯伦), Zhonghua ZHANG (张中华). A two-dimensional air streamer discharge modified model based on artificial stability term under non-uniform electric field at low temperature and sub-atmospheric pressure[J]. Plasma Science and Technology, 2021, 23(7): 75403-075403. DOI: 10.1088/2058-6272/abfd89
Citation: Zhihang ZHAO (赵志航), Xinlao WEI (魏新劳), Shuang SONG (宋爽), Lin CUI (崔林), Kailun YANG (杨凯伦), Zhonghua ZHANG (张中华). A two-dimensional air streamer discharge modified model based on artificial stability term under non-uniform electric field at low temperature and sub-atmospheric pressure[J]. Plasma Science and Technology, 2021, 23(7): 75403-075403. DOI: 10.1088/2058-6272/abfd89

A two-dimensional air streamer discharge modified model based on artificial stability term under non-uniform electric field at low temperature and sub-atmospheric pressure

Funds: First, we would like to thank the National Key RESEARCH and Development Program of the Ministry of Science and Technology 'Life Prediction and Operation Risk Assessment of UHV Equipment under long-term Service conditions (No. 2017YFB0902705)' for supporting this work. Second, thanks to the No.703 Research Institute of CSIC (China Shipbuilding Industry Corporation) and Yunnan Electric Test&Research Institute Group CO., Ltd for assistance in this paper.
More Information
  • Received Date: March 19, 2021
  • Revised Date: April 29, 2021
  • Accepted Date: April 29, 2021
  • In this paper, an improved air discharge fluid model under non-uniform electric field is constructed based on the plasma module COMSOL Multiphysics with artificial stability term, and the boundary conditions developed in the previous paper are applied to the calculation of photoionization rate. Based on the modified model, the characteristics of low temperature sub-atmospheric air discharge under 13 kV direct current voltage are discussed, including needle-plate and needle-needle electrode structures. Firstly, in order to verify the reliability of the model, a numerical example and an experimental verification were carried out for the modified model respectively. Both verification results show that the model can ensure the accuracy and repeatability of the calculation. Secondly, according to the calculation results of the modified model, under the same voltage and spacing, the reduced electric field under low temperature sub-atmosphere pressure is larger than that under normal temperature and atmospheric pressure. The high electric field leads to the air discharge at low temperature and sub atmospheric pressure entering the streamer initiation stage earlier, and has a faster propagation speed in the streamer development stage, which shortens the overall discharge time. Finally, the discharge characteristics of the two electrode structures are compared, and it is found that the biggest difference between them is that there is a pre-ionization region near the cathode in the needle-needle electrode structure. When the pre-ionization level reaches 1013 cm-3, the propagation speed of the positive streamer remains unchanged throughout the discharge process, and is no longer affected by the negative streamer. The peak value of electric field decreases with the increase of pre-ionization level, and tends to be constant during streamer propagation. Based on the previous paper, this paper constructs the air discharge model under non-uniform electric field, complements with the previous paper, and forms a relatively complete set of air discharge simulation system under low temperature and sub atmospheric pressure, which provides a certain reference for future research.
  • [1]
    Zhao Z H et al 2020 Plasma Sci. Technol. 22 045403
    [2]
    Ivanov S N, Lisenkov V V and Shpak V G 2010 J. Phys. D:Appl. Phys. 43 315204
    [3]
    Yatom S et al 2016 Plasma Sources Sci. Technol. 25 064001
    [4]
    Nijdam S et al 2010 J. Phys. D: Appl. Phys. 43 145204
    [5]
    Ono R and Oda T 2007 J. Phys. D: Appl. Phys. 40 176
    [6]
    Zhang Y et al 2008 Proc. CSEE 28 6
    [7]
    Wu C and Kunhardt E 1988 Phys. Rev. A 37 4396
    [8]
    Morrow R and Lowke J J 1997 J. Phys. D: Appl. Phys. 30 614
    [9]
    Boeuf J P and Pitchford L C 1991 IEEE Trans. Plasma Sci.19 286
    [10]
    Fiala A, Pitchford L C and Boeuf J P 1994 Phys. Rev. E 49 5607
    [11]
    Babaeva N Y and Naidis G V 1996 J. Phys. D: Appl. Phys.29 2423
    [12]
    Babaeva N Y and Naidis G V 1997 IEEE Trans. Plasma Sci.25 375
    [13]
    Kulikovsky A A 1998 Phys. Rev. E 57 7066
    [14]
    Kulikovsky A A 1995 J. Comput. Phys. 119 149
    [15]
    Pechereau F, Jánský J and Bourdon A 2012 Plasma SourcesSci. Technol. 21 055011
    [16]
    Pancheshnyi S et al 2008 J. Comput. Phys. 227 6574
    [17]
    Unfer T et al 2010 Comput. Phys. Commun. 181 247
    [18]
    Hagelaar G J M and Kroesen G M W 2000 J. Comput. Phys.159 1
    [19]
    Lin K M et al 2012 Comput. Phys. Commun. 183 1225
    [20]
    Unfer T et al 2007 J. Comput. Phys. 227 898
    [21]
    Li C et al 2012 Plasma Sources Sci. Technol. 21 055019
    [22]
    Babaeva N Y, Tereshonok D V and Naidi G V 2016 Plasma Sources Sci. Technol. 25 044008
    [23]
    Rauf S et al 2017 Plasma Sources Sci. Technol. 26 065006
    [24]
    Chanrion O and Neubert T 2008 J. Comput. Phys. 227 7222
    [25]
    Levko D et al 2012 J. Appl. Phys. 111 013303
    [26]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
    [27]
    Johnson A A and Tezduyar T E 1999 Comput. Mech. 23 130
    [28]
    Codina R, Oñate E and Cervera M 1992 Comput. Methods Appl. Mech. Eng. 94 239
    [29]
    Codina R 1998 Comput. Methods Appl. Mech. Eng. 156 185
    [30]
    Cai X J et al 2015 Proc. CSEE 35 240 (in Chinese)
    [31]
    Tardiveau P et al 2009 J. Phys. D: Appl. Phys. 42 175202
    [32]
    Pechereau F et al 2014 IEEE Trans. Plasma Sci. 42 2346
    [33]
    Soloviev V R 2012 J. Phys. D: Appl. Phys. 45 025205
  • Related Articles

    [1]Tianchi WANG (王天驰), Yingchao DU (杜应超), Wei CHEN (陈伟), Junna LI (李俊娜), Haiyang WANG (王海洋), Tao HUANG (黄涛), Linshen XIE (谢霖燊), Le CHENG (程乐), Ling SHI (石凌). A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms[J]. Plasma Science and Technology, 2021, 23(11): 115508. DOI: 10.1088/2058-6272/ac2420
    [2]Hui LIU (刘辉), Xiang NIU (牛翔), Huan WU (伍环), Daren YU (于达仁). Simulation study of the influence of leak electrons on the discharge characteristics of a cusped field thruster[J]. Plasma Science and Technology, 2019, 21(4): 45502-045502. DOI: 10.1088/2058-6272/aaf674
    [3]Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5
    [4]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [5]Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601
    [6]CHEN Yun (陈云), ZHANG Jian (张健). Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires[J]. Plasma Science and Technology, 2013, 15(11): 1081-1087. DOI: 10.1088/1009-0630/15/11/01
    [7]QIU Lilong (邱立龙), ZHUANG Ming (庄明), MAO Jin (毛晋), HU Liangbing (胡良兵), SHENG Linhai (盛林海). Optimization analysis and simulation of the EAST cryogenic system[J]. Plasma Science and Technology, 2012, 14(11): 1030-1034. DOI: 10.1088/1009-0630/14/11/13
    [8]WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09
    [9]PANG Xuexia(庞学霞), DENG Zechao(邓泽超), JIA Pengying(贾鹏英), LIANG Weihua(梁伟华), LI Xia(李霞). Influence of Ionization Degrees on the Evolutions of Charged Particles in Atmospheric Plasma at Low Altitude[J]. Plasma Science and Technology, 2012, 14(8): 716-722. DOI: 10.1088/1009-0630/14/8/07
    [10]TIAN Lixia (田丽霞), LIU Mantian (刘慢天), ZHU Jingjun (朱敬军), AN Zhu (安竹), WANG Baoyi (王宝义), QIU Xiubo (秦秀波). Preliminary Measurement of the K-Shell Ionization Cross Sections of Ti by Positron Impact in the Low Energy Region[J]. Plasma Science and Technology, 2012, 14(5): 434-437. DOI: 10.1088/1009-0630/14/5/24
  • Cited by

    Periodical cited type(15)

    1. Jiang, H., Lai, Y., Gong, Z. et al. Simulation comparison of the positive and negative surface discharges induced by metal particles in a plate–surface–plate structure under DC excitation in atmospheric air. Journal of Physics D: Applied Physics, 2024, 57(30): 305202. DOI:10.1088/1361-6463/ad415d
    2. Wang, R., Chen, S., Bai, Y. et al. Self-driven microplasma decontaminates chemical warfare agent simulant in different gas environments. Nano Energy, 2024. DOI:10.1016/j.nanoen.2023.109233
    3. Zhao, Z., Wang, Z., Duan, Z. et al. Dynamical similarity of streamer propagation in geometrically similar combined air gaps. IEEE Transactions on Dielectrics and Electrical Insulation, 2024. DOI:10.1109/TDEI.2024.3457594
    4. Fu, Y., He, M., Chen, C. et al. Effects of rod radius and voltage on streamer discharge in a short air gap. Plasma Science and Technology, 2023, 25(8): 085401. DOI:10.1088/2058-6272/acc16c
    5. Huang, D., Fan, J., Wang, P. et al. Current Status and Future Prospects of Transmission and Transformation Equipment Air Gap Insulation Characteristics Under Extreme Natural Environmental Conditions | [极端环境条件下输变电设备空气间隙绝缘特性研究现状及展望]. Gaodianya Jishu/High Voltage Engineering, 2023, 49(5): 1892-1906. DOI:10.13336/j.1003-6520.hve.20230700
    6. Zhao, Z., Wei, X., Yao, Y. et al. Study on Discharge Characteristics of Non-uniform Electric Field Air Streamer at Low Temperature and Sub Atmospheric Pressure | [低温次大气压不均匀电场空气流注放电特性研究]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43(10): 4034-4045. DOI:10.13334/j.0258-8013.pcsee.213012
    7. Zhao, Z., Wang, M. Study on Characteristics of Low-Temperature Subatmospheric Air Surface Dielectric Barrier Discharge Under Square Wave Voltage. IEEE Transactions on Plasma Science, 2023, 51(4): 1016-1028. DOI:10.1109/TPS.2023.3260951
    8. Yan, Z., Zhang, J., Liu, Q. et al. Simulation study of the effect of electrode embedded with magnesia-carbon material on the breakdown process in micro-gap and electric field in arc. Physica Scripta, 2022, 97(12): 125602. DOI:10.1088/1402-4896/ac9c9c
    9. HE, J., PENG, B., JIANG, N. et al. Experimental and simulated investigation of microdischarge characteristics in a pin-to-pin dielectric barrier discharge (DBD) reactor. Plasma Science and Technology, 2022, 24(10): 105402. DOI:10.1088/2058-6272/ac6e58
    10. Meng, Y., Xuan, H., Deng, Z. et al. The surface flashover process under positive lightning impulse voltage: Initial stage and evolution. Journal of Physics D: Applied Physics, 2022, 55(38): 385203. DOI:10.1088/1361-6463/ac7e87
    11. Zhao, Z., Wei, X., Guan, R. et al. Study on Discharge Characteristics of Low-Temperature Subatmospheric Air Streamer Under Square Wave Voltage. IEEE Transactions on Plasma Science, 2022, 50(9): 2786-2795. DOI:10.1109/TPS.2022.3188756
    12. Zhao, Z., Wei, X., Guan, R. et al. Study on Uniform Electric Field Air Streamer at Low Temperature and Subatmospheric Pressure. IEEE Transactions on Plasma Science, 2022, 50(8): 2333-2341. DOI:10.1109/TPS.2022.3186808
    13. Zhao, Z., Wei, X., Zhao, Q. et al. Simulation of Low Temperature and Subatmospheric Pressure Streamer Discharge under High-Frequency Square Wave Voltage. IEEE Transactions on Plasma Science, 2022, 50(7): 2016-2025. DOI:10.1109/TPS.2022.3180728
    14. Zhao, Z., Wei, X., Guan, R. et al. Simulation of Air Surface Dielectric Barrier Discharge at Low Temperature and Subatmospheric Pressure. IEEE Transactions on Plasma Science, 2022, 50(5): 1160-1171. DOI:10.1109/TPS.2022.3166518
    15. Li, X., Wang, D., Chen, J. et al. Numerically simulated influence of positive ions on the propagation of a positive streamer initiated in an argon plasma jet. Physics of Fluids, 2022, 34(2): 027112. DOI:10.1063/5.0077972

    Other cited types(0)

Catalog

    Article views (251) PDF downloads (501) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return