Advanced Search+
Dongjie CUI (崔东洁), Yue YIN (阴悦), Huandong LI (李洹东), Xiaoxia HU (胡小霞), Jie ZHUANG (庄杰), Ruonan MA (马若男), Zhen JIAO (焦浈). Comparative transcriptome analysis of atmospheric pressure cold plasma enhanced early seedling growth in Arabidopsis thaliana[J]. Plasma Science and Technology, 2021, 23(8): 85502-085502. DOI: 10.1088/2058-6272/ac0686
Citation: Dongjie CUI (崔东洁), Yue YIN (阴悦), Huandong LI (李洹东), Xiaoxia HU (胡小霞), Jie ZHUANG (庄杰), Ruonan MA (马若男), Zhen JIAO (焦浈). Comparative transcriptome analysis of atmospheric pressure cold plasma enhanced early seedling growth in Arabidopsis thaliana[J]. Plasma Science and Technology, 2021, 23(8): 85502-085502. DOI: 10.1088/2058-6272/ac0686

Comparative transcriptome analysis of atmospheric pressure cold plasma enhanced early seedling growth in Arabidopsis thaliana

Funds: This work was supported by National Natural Science Foundation of China (Nos. 11605159 and 11405147), Chinese Postdoctoral Science Foundation (No. 2017M612412), the Foundation of Key Technology Research Project of Henan Province (No. 182102311115), Key Discipline Construction Project of Zhengzhou University (No. 32410257) and Youth Innovation Project of Key Discipline of Zhengzhou University (No. XKZDQN202002).
More Information
  • Received Date: January 11, 2021
  • Revised Date: May 25, 2021
  • Accepted Date: May 27, 2021
  • The stimulatory effects of atmospheric pressure cold plasma (APCP) on plant growth have attracted much attention due to its great potential as a new approach to increase crop growth and production. However, the transcriptome changes of plants induced by APCP treatment are unknown. Herein, the comparative transcriptome analysis was performed to identify the transcriptional response of Arabidopsis thaliana seedlings to APCP. Results showed that APCP exhibited a dual effect (stimulation or inhibition) on Arabidopsis seedling growth dependent on the treatment time and the maximum stimulatory effects were achieved by 1 min APCP treatment. The metabolic analysis of amino acid, glutathione (GSH) and phytohormone demonstrated that 1 min APCP treatment decreased most amino acids concentrations in Arabidopsis seedling, while the accumulations of GSH, gibberellins and cytokinin were significantly increased. The RNA-Seq analysis showed that a total of 218 differentially expressed genes (DEGs) were identified in 1 min APCP-treated seedlings versus the control, including 20 up-regulated and 198 down-regulated genes. The DEGs were enriched in pathways related to GSH metabolism, mitogen-activated protein kinase (MAPK) signaling transduction and plant resistance against pathogens. Moreover, most of the DEGs were defense, stimuli or stress-responsive genes and encoded proteins with oxidoreductase activity. Expression determination of six randomly selected DEGs by quantitative real-time PCR demonstrated similar pattern with the RNA-Seq data. These results indicated that the moderate APCP treatment may regulate the expression of stimuli/stress-responsive genes involved in GSH, phytohormone/amino metabolism and plant defense against pathogens via MAPK signal transduction pathway, accordingly enhance Arabidopsis seedling growth. This study provides a theoretical basis for the application of APCP in agriculture.
  • [1]
    Arjunan K P et al 2015 Int. J. Mol. Sci. 16 2971
    [2]
    Puač N, Gherardi M and Shiratani M 2018 Plasma Process.Polym. 15 1700174
    [3]
    Khamsen N et al 2016 ACS Appl. Mater. Interfaces 8 19268
    [4]
    Zahoranová A 2015 Plasma Chem. Plasma Process. 36 397
    [5]
    Jiang J F et al 2014 Plasma Sci. Technol. 16 54
    [6]
    Šerá B et al 2012 Hemp (Cannabis sativa L.) seeds after plasma treatment Proc. 2012 13th Int. Conf. on Optimization of Electrical and Electronic Equipment (Brasov, Romania) (Piscataway, NJ: IEEE) (https://doi.org/10.1109/optim.2012.6231981)
    [7]
    Šerá B et al 2013 Plasma Sci. Technol. 15 935
    [8]
    Li L et al 2015 Sci. Rep. 5 13033
    [9]
    Selcuk M, Oksuz L and Basaran P 2008 Bioresour. Technol.99 5104
    [10]
    Iranbakhsh A et al 2018 Plasma Chem. Plasma Process. 38 29
    [11]
    Ito M et al 2018 Plasma Process. Polym. 15 1700073
    [12]
    Iseni S et al 2016 Appl. Phys. Lett. 108 184101
    [13]
    Graves D B 2012 J. Phys. D: Appl. Phys. 45 263001
    [14]
    Ishibashi Y et al 2012 Ann. Bot. 111 95
    [15]
    Huang Y T et al 2017 BMC Plant Biol. 17 1
    [16]
    Mildažienė V et al 2019 Sci. Rep. 9 6437
    [17]
    Moghanloo M et al 2019 3 Biotech 9 288
    [18]
    Iranbakhsh A et al 2020 Plasma Chem. Plasma Process.40 527
    [19]
    Gierczik K et al 2020 Plasma Process. Polym. 17 1900123
    [20]
    Adhikari B et al 2020 Free Radic. Biol. Med. 156 57
    [21]
    Cui D J et al 2019 Front. Plant Sci. 10 1322
    [22]
    Xu H B et al 2019 J. Phys. D: Appl. Phys. 52 395201
    [23]
    Qi W C et al 2015 Ecotoxicol. Environ. Saf. 115 243
    [24]
    Wang L et al 2018 J. Environ. Radioact. 195 1
    [25]
    Wang H F et al 2018 Plant J. 95 976
    [26]
    Morison J I L and Gifford R M 1984 Aust. J. Plant Physiol.11 375
    [27]
    Orsini F et al 2010 J. Exp. Bot. 61 3787
    [28]
    Jander G et al 2004 Plant J. 39 465
    [29]
    Wang Y et al 2008 J. Chromatogr. B 863 94
    [30]
    Liu J F et al 2014 Analyst 139 5605
    [31]
    Chen M L et al 2011 J. Chromatogr. B 879 938
    [32]
    Kojima M et al 2009 Plant Cell Physiol. 50 1201
    [33]
    Anders S, Pyl P T and Huber W 2015 Bioinformatics 31 166
    [34]
    Kim D, Langmead B and Salzberg S L 2015 Nat. Methods 12 357
    [35]
    Trapnell C et al 2010 Nat. Biotechnol. 28 511
    [36]
    Love M I, Huber W and Anders S 2014 Genome Biol. 15 550
    [37]
    Eisen M B et al 1998 Proc. Natl. Acad. Sci. USA 95 14863
    [38]
    Chen C J et al 2020 Mol. Plant. 13 1194
    [39]
    Begara-Morales J C et al 2014 Plant Cell Physiol. 55 1080
    [40]
    Noctor G et al 2012 Plant Cell Environ. 35 454
    [41]
    Shashikanthalu S P, Ramireddy L and Radhakrishnan M 2020 J. Appl. Res. Med. Aromat. Plants 18 100259
    [42]
    Rifna E J, Ratish Ramanan K and Mahendran R 2019 Trends Food Sci. Technol. 86 95
    [43]
    Ghasempour M et al 2020 Contrib. Plasma Phys. 60 e201900159
    [44]
    Puligundla P, Kim J W and Mok C 2017 Food Control 71 376
    [45]
    Okushima Y et al 2007 Plant Cell 19 118
    [46]
    Nibau C, Gibbs D J and Coates J C 2008 New Phytol. 179 595
    [47]
    Guyomarc’h S et al 2012 Phil. Trans. R. Soc. B 367 1509
    [48]
    Hodge A 2009 Plant Cell Environ. 32 628
    [49]
    Puač N et al 2014 Appl. Phys. Lett. 104 214106
    [50]
    Morot-Gaudry J F, Job D and Lea P J 2001 Amino acid metabolism ed P J Lea and J F Morot-Gaudry Plant Nitrogen (Berlin: Springer)
    [51]
    Forde B G and Lea P J 2007 J. Exp. Bot. 58 2339
    [52]
    Amarante L D, Lima J D and Sodek L 2006 Environ. Exp. Bot.58 123
    [53]
    Alburquerque N et al 2006 Ann. Appl. Biol. 149 27
    [54]
    Ashton F M et al 1976 Annu. Rev. Plant Physiol. 27 95
    [55]
    Foyer C H and Noctor G 2001 The molecular biology and metabolism of glutathione Significance of Glutathione to Plant Adaptation to the Environment ed D Grill et al (Dordrecht: Springer)
    [56]
    Semane B et al 2007 Physiol. Plant. 129 519
    [57]
    Marrs K A 1996 Annu. Rev. Plant Physiol. Plant Mol. Biol.47 127
    [58]
    Wang Y et al 2014 Plant Physiol. Biochem. 79 10
    [59]
    Wang X L et al 2013 Ecol. Res. 29 167
    [60]
    Tamaki V and Mercier H 2007 J. Plant Physiol. 164 1543
    [61]
    Pandhair V and Sekhon B S 2006 J. Plant Biochem.Biotechnol. 15 71
    [62]
    Hayashi N et al 2015 Japan. J. Appl. Phys. 54 06GD01
    [63]
    Ji S H et al 2015 Plasma Process. Polym. 12 1164
    [64]
    Panngom K et al 2014 PLoS One 9 e99300
    [65]
    Caregnato F F et al 2008 Mar. Pollut. Bull. 56 1119
    [66]
    Hou Y H et al 2019 Mar. Drugs 17 147
    [67]
    Zhao F Y et al 2015 Plant Growth Regul. 75 535
    [68]
    Petersen L N et al 2009 J. Exp. Bot. 60 3727
    [69]
    Howden A J M et al 2011 New Phytol. 190 49
    [70]
    Degutytė-Fomins L et al 2020 Japan. J. Appl. Phys. 59 SH1001
    [71]
    Takei K, Yamaya T and Sakakibara H 2004 J. Biol. Chem. 279 41866
    [72]
    Hirose N et al 2008 J. Exp. Bot. 59 75
    [73]
    Mizutani M and Ohta D 2010 Annu. Rev. Plant Biol. 61 291
    [74]
    Zhao X Y et al 2007 Plant Physiol. 145 106
    [75]
    Shan C et al 2014 PLoS One 9 e87110
    [76]
    Lo S F et al 2017 Plant Biotechnol. J. 15 850
    [77]
    Wuddineh W A et al 2015 Plant Biotechnol. J. 13 636
    [78]
    Zhou Y C and Underhill S J R 2016 Plant Physiol. Biochem.98 81
    [79]
    Zhu Q H et al 2014 New Phytol. 201 574
    [80]
    Ma R N et al 2015 J. Hazard. Mater. 300 643
    [81]
    Novoselov V V et al 2015 Exp. Mol. Pathol. 99 575
    [82]
    Bullard J H et al 2010 BMC Bioinfor. 11 94
    [83]
    Marioni J C et al 2008 Genome Res. 18 1509
    [84]
    Lei R et al 2015 Gene 557 82
    [85]
    Calabrese C et al 2013 BMC Genomics 14 855
  • Related Articles

    [1]N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647
    [2]Jiafeng JIANG (蒋佳峰), Jiangang LI (李建刚), Yuanhua DONG (董元华). Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato[J]. Plasma Science and Technology, 2018, 20(4): 44007-044007. DOI: 10.1088/2058-6272/aaa0bf
    [3]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [4]ZHAN Zhibin (詹志彬), DI Lanbo (底兰波), ZHANG Xiuling (张秀玲), LI Yanchun (李燕春). Synthesis of Cu-Doped Mixed-Phase TiO2 with the Assistance of Ionic Liquid by Atmospheric-Pressure Cold Plasma[J]. Plasma Science and Technology, 2016, 18(5): 494-499. DOI: 10.1088/1009-0630/18/5/09
    [5]TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16
    [6]JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12
    [7]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [8]F. JAN, A. W. KHAN, A. SAEED, M. ZAKAULLAH. Comparative Study of Plasma Parameters in Magnetic Pole Enhanced Inductively Coupled Argon Plasmas[J]. Plasma Science and Technology, 2013, 15(4): 329-334. DOI: 10.1088/1009-0630/15/4/05
    [9]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [10]QIAN Muyang(钱沐杨), REN Chunsheng(任春生), WANG Dezhen(王德真), FENG Yan(冯岩), ZHANG Jialiang(张家良). Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode[J]. Plasma Science and Technology, 2010, 12(5): 561-565.
  • Cited by

    Periodical cited type(3)

    1. Zhang, B., Ping, T., Mu, L. et al. Highly selective conversion of alkali lignin into aromatic monomers by pulse dielectric barrier discharge plasma at mild reaction conditions. Sustainable Materials and Technologies, 2023. DOI:10.1016/j.susmat.2023.e00643
    2. Wang, Y., Zhou, Y., Wu, H. et al. Computational study of microdischarges driven by electron beam injection with particle-in-cell/Monte Carlo collision simulations. Journal of Applied Physics, 2022, 131(16): 163301. DOI:10.1063/5.0087004
    3. Wang, F., Zhang, S., Liu, Y. et al. Instability mechanism and discharge regime diagnosis of microthrusters based on plasma properties. Applied Optics, 2021, 60(4): 1021-1030. DOI:10.1364/AO.414608

    Other cited types(0)

Catalog

    Article views (135) PDF downloads (248) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return