Advanced Search+
Lei LI (李磊), Le HAN (韩乐), Pengfei ZI (訾鹏飞), Lei CAO (曹磊), Tiejun XU (许铁军), Nanyu MOU (牟南瑜), Zhaoliang WANG (王兆亮), Lei YIN (殷磊), Damao YAO (姚达毛). Conceptual design and heat transfer performance of a flat-tile water-cooled divertor target[J]. Plasma Science and Technology, 2021, 23(9): 95601-095601. DOI: 10.1088/2058-6272/ac0689
Citation: Lei LI (李磊), Le HAN (韩乐), Pengfei ZI (訾鹏飞), Lei CAO (曹磊), Tiejun XU (许铁军), Nanyu MOU (牟南瑜), Zhaoliang WANG (王兆亮), Lei YIN (殷磊), Damao YAO (姚达毛). Conceptual design and heat transfer performance of a flat-tile water-cooled divertor target[J]. Plasma Science and Technology, 2021, 23(9): 95601-095601. DOI: 10.1088/2058-6272/ac0689

Conceptual design and heat transfer performance of a flat-tile water-cooled divertor target

Funds: The study was supported by the National MCF Energy R&D Program (No. 2018YFE0312300), the National Key Research and Development Program of China (No. 2017YFA0402500), and the Science Foundation of the Institute of Plasma Physics, Chinese Academy of Sciences (No. Y45ETY2302).
More Information
  • Received Date: March 07, 2021
  • Revised Date: May 26, 2021
  • Accepted Date: May 27, 2021
  • The divertor target components for the Chinese fusion engineering test reactor (CFETR) and the future experimental advanced superconducting tokamak (EAST) need to remove a heat flux of up to ∼20 MW m−2 . In view of such a high heat flux removal requirement, this study proposes a conceptual design for a flat-tile divertor target based on explosive welding and brazing technology. Rectangular water-cooled channels with a special thermal transfer structure (TTS) are designed in the heat sink to improve the flat-tile divertor target’s heat transfer performance (HTP). The parametric design and optimization methods are applied to study the influence of the TTS variation parameters, including height (H), width (W* ), thickness (T), and spacing (L), on the HTP. The research results show that the flat-tile divertor target’s HTP is sensitive to the TTS parameter changes, and the sensitivity is T > L > W* > H. The HTP first increases and then decreases with the increase of T, L, and W* and gradually increases with the increase of H. The optimal design parameters are as follows: H = 5.5 mm, W* = 25.8 mm, T = 2.2 mm, and L = 9.7 mm. The HTP of the optimized flat-tile divertor target at different flow speeds and tungsten tile thicknesses is studied using the numerical simulation method. A flat-tile divertor mock-up is developed according to the optimized parameters. In addition, high heat flux (HHF) tests are performed on an electron beam facility to further investigate the mock-up HTP. The numerical simulation calculation results show that the optimized flat-tile divertor target has great potential for handling the steady-state heat load of 20 MW m−2 under the tungsten tile thickness <5 mm and the flow speed …7ms−1 . The heat transfer efficiency of the flat-tile divertor target with rectangular cooling channels improves by ∼13% and ∼30% compared to that of the flat-tile divertor target with circular cooling channels and the ITER-like monoblock, respectively. The HHF tests indicate that the flat-tile divertor mock-up can successfully withstand 1000 cycles of 20 MW m−2 of heat load without visible deformation, damage, and HTP degradation. The surface temperature of the flat-tile divertor mock-up at the 1000th cycle is only ∼930 °C. The flat-tile divertor target’s HTP is greatly improved by the parametric design and optimization method, and is better than the ITER-like monoblock and the flat-tile mock-up for the WEST divertor. This conceptual design is currently being applied to the engineering design of the CFETR and EAST flat-tile divertors
  • [1]
    Tobita K et al 2007 Nucl. Fusion 47 892
    [2]
    Tillack M S et al 2011 Fusion Eng. Des. 86 71
    [3]
    Eich T et al 2013 Nucl. Fusion 53 093031
    [4]
    Zhou Z B et al 2011 Fusion Eng. Des. 86 1599
    [5]
    Hu Q S et al 2010 Fusion Eng. Des. 85 1508
    [6]
    Wu Z W et al 2011 J. Nucl. Mater. 415 S345
    [7]
    Li J et al 2014 Phys. Scr. 2014 014001
    [8]
    Wan B N et al 2015 Nucl. Fusion 55 104015
    [9]
    Wang J, Lian B and Zhang S C 2015 Phys. Scr. 2015 014003
    [10]
    Yao D M et al 2015 Fusion Eng. Des. 98–99 1692
    [11]
    Chen X H et al 2016 Fusion Eng. Des. 108 98
    [12]
    Li M Y and You J H 2016 Fusion Eng. Des. 113 162
    [13]
    Fukuda M et al 2016 Fusion Eng. Des. 107 44
    [14]
    Zhao S X et al 2016 Fusion Eng. Des. 112 425
    [15]
    Higashijima S, Sakurai S and Sakasai A 2011 J. Nucl. Mater.417 912
    [16]
    Hirai T et al 2013 Fusion Eng. Des. 88 1798
    [17]
    Hirai T et al 2015 J. Nucl. Mater. 463 1248
    [18]
    Hirai T et al 2014 Phys. Scr. 2014 014006
    [19]
    Panayotis S et al 2017 Nucl. Mater. Ener. 12 200
    [20]
    Li Q et al 2017 Phys. Scr. 2017 014020
    [21]
    Norajitra P et al 2005 Nucl. Fusion 45 1271
    [22]
    Ritz G et al 2009 Phys. Scr. 2009 014064
    [23]
    Ma R et al 2014 Fusion Eng. Des. 89 3117
    [24]
    Ma R et al 2015 Fusion Eng. Des. 93 43
    [25]
    Sun C X et al 2014 J. Mater. Sci. Technol. 30 1230
    [26]
    Hou F X et al 2017 Nucl. Eng. Des. 316 209
    [27]
    Zhao Y F et al 2016 Nucl. Eng. Des. 303 42
    [28]
    Wang Z W, Song Y T and Huang S H 2012 Fusion Eng. Des.87 868
    [29]
    Domalapally P and Subba F 2015 Fusion Eng. Des. 98–99 1267
    [30]
    Milnes J, Burns A and Drikakis D 2012 Fusion Eng. Des.87 1647
    [31]
    Missirlian M et al 2018 Fusion Eng. Des. 136 403
  • Related Articles

    [1]A M EL SHERBINI, M M HAGRASS, M R M RIZK, E A EL-BADAWY. Plasma ignition threshold disparity between silver nanoparticle-based target and bulk silver target at different laser wavelengths[J]. Plasma Science and Technology, 2019, 21(1): 15502-015502. DOI: 10.1088/2058-6272/aadf7e
    [2]Hang LI (李航), Xiang GAO (高翔), Guoqiang LI (李国强), Zhengping LUO (罗正平), Damao YAO (姚达毛), Yong GUO (郭勇). Design of snowflake-diverted equilibria of CFETR[J]. Plasma Science and Technology, 2018, 20(3): 35102-035102. DOI: 10.1088/2058-6272/aa9e83
    [3]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [4]LIAN Youyun (练友运), LIU Xiang (刘翔), FENG Fan (封范), CHEN Lei (陈蕾), CHENG Zhengkui (程正奎), WANG Jin (王金), CHEN Jiming (谌继明). Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components[J]. Plasma Science and Technology, 2016, 18(2): 184-189. DOI: 10.1088/1009-0630/18/2/15
    [5]CHEN Lei (陈蕾), LIU Xiang (刘翔), LIAN Youyun (练友运), CAI Laizhong (才来中). Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept[J]. Plasma Science and Technology, 2015, 17(9): 792-796. DOI: 10.1088/1009-0630/17/9/12
    [6]MA Xuebin(马学斌), LIU Songlin(刘松林), LI Jia(李佳), PU Yong(蒲勇), CHEN Xiangcun(陈香存). Preliminary Design of a Helium-Cooled Ceramic Breeder Blanket for CFETR Based on the BIT Concept[J]. Plasma Science and Technology, 2014, 16(4): 390-395. DOI: 10.1088/1009-0630/16/4/16
    [7]YU Jianyang(俞建阳), LIU Huaping(刘华坪), XU Dimeng(徐迪孟), CHEN Fu(陈浮). Investigation of the DBD Plasma Effect on Flat Plate Flow[J]. Plasma Science and Technology, 2014, 16(3): 197-202. DOI: 10.1088/1009-0630/16/3/05
    [8]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [9]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [10]XU Tiejun, HUANG Shenghong, XIE Han, SONG Yuntao, ZHAN Ping, GAO Daming. Optimization of Heat-Sink Cooling Structure in EAST with Hydraulic Expansion Technique[J]. Plasma Science and Technology, 2011, 13(6): 765-768.
  • Cited by

    Periodical cited type(22)

    1. Chen, X., Zhang, H., Lu, M. et al. Structure optimization and performance analysis of hypervapotron heat exchange channel | [超汽化换热通道结构优化与性能分析]. Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology, 2025, 49(1): 15-24. DOI:10.14177/j.cnki.32-1397n.2025.49.01.002
    2. Wang, X., Li, J., Wang, J.-C. et al. Research on the high heat flux removal technique of a lithium target for the AB-BNCT application. Nuclear Engineering and Technology, 2025. DOI:10.1016/j.net.2025.103498
    3. Yang, X.-K., Yin, L., Yao, D.-M. Design and analysis of the first wall on the NBI shine-through area of high magnetic field side of EAST | [EAST 装置高场侧 NBI 束透区第一壁的设计和分析]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(4): 451-456. DOI:10.16568/j.0254-6086.202404012
    4. Tan, Y., Wang, J., Feng, F. et al. Additive manufacturing of W/RAFM hypervapotron plasma-facing components and the steady state thermal fatigue behavior. Journal of Nuclear Materials, 2024. DOI:10.1016/j.jnucmat.2024.155333
    5. Xuan, C., Zhu, D., Gao, B. et al. Melting of W/Cu flat type component for main limiter and its impact on plasma operation in EAST experiments. Nuclear Fusion, 2024, 64(8): 086039. DOI:10.1088/1741-4326/ad573e
    6. Yao, G., Shen, X., Liu, J.-Q. et al. Study on damage behavior of the outer horizontal target in the EAST lower divertor after plasma operations. Nuclear Materials and Energy, 2024. DOI:10.1016/j.nme.2024.101640
    7. Zhang, X., Wang, Y., Zhong, C. et al. Progress, Load Study, and Structural Analysis of the CFETR Divertor Dome. IEEE Transactions on Plasma Science, 2024, 52(4): 1460-1473. DOI:10.1109/TPS.2024.3382568
    8. Yang, X., Yao, D., Yin, L. et al. Design of the CFC composite brazed HFS first wall on the NBI shine-through area of the EAST device. Fusion Engineering and Design, 2024. DOI:10.1016/j.fusengdes.2024.114151
    9. Lu, M., Han, L., Zhou, J. et al. Thermohydraulic and thermal fatigue characteristics of W/Cu flat-type microchannel mock-up for CFETR divertor. Applied Thermal Engineering, 2024. DOI:10.1016/j.applthermaleng.2023.122079
    10. Xu, T., Cao, L., Peng, X. et al. Design and Research and Development of Front-Face Remote Handling Targets for CFETR Divertor. IEEE Transactions on Plasma Science, 2024, 52(9): 3542-3548. DOI:10.1109/TPS.2024.3399319
    11. Xu, D., Cheng, J., Chen, P. et al. Recent progress in research on bonding technologies of W/Cu monoblocks as the divertor for nuclear fusion reactors. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101482
    12. Zhang, X., Yin, L., Mou, N. et al. Design and thermal-hydraulic analysis for CFETR divertor OVT in consideration of RH compatibility. Fusion Engineering and Design, 2023. DOI:10.1016/j.fusengdes.2023.113865
    13. Liu, C., Zhou, J., Cheng, K. et al. Flow thermohydraulic characterization of open diverging microchannel heat sink for high heat flux dissipation. Applied Thermal Engineering, 2023. DOI:10.1016/j.applthermaleng.2023.120396
    14. Huang, J., Gong, X., Garofalo, A.M. et al. Long-pulse high-performance H-mode plasmas achieved on EAST. Physics of Plasmas, 2023, 30(6): 062504. DOI:10.1063/5.0146690
    15. Zhu, D., Guo, Z., Xuan, C. et al. In situ melting phenomena on W plasma-facing components for lower divertor during long-pulse plasma operations in EAST. Nuclear Fusion, 2023, 63(3): 036022. DOI:10.1088/1741-4326/acb3e1
    16. Ebadi, H., Carrone, F., Difonzo, R. et al. A multi-scale hybrid approach to the modelling and design of a novel micro-channel cooling structure for the W7X divertor. Case Studies in Thermal Engineering, 2023. DOI:10.1016/j.csite.2023.102734
    17. Zhang, X., Xu, T., Yin, L. et al. Front-Face RH Compatible Structure Design and Thermal Analysis for CFETR Divertor Dome. Fusion Science and Technology, 2023, 80(1): 98-107. DOI:10.1080/15361055.2023.2198482
    18. Lu, M., Zhou, J., Chen, X. The Development and Application of Microchannel Heat Sink on W/Cu Flat-Type Mock-Up. IEEE Transactions on Plasma Science, 2022, 50(11): 4213-4219. DOI:10.1109/TPS.2022.3169809
    19. Liu, C., Zhou, J., Zhao, Q. et al. Numerical Investigation of Heat Transfer in Open Microchannel Heat Sinks With Transverse Ribs for High Heat Flux Dissipation. IEEE Transactions on Plasma Science, 2022, 50(11): 4220-4225. DOI:10.1109/TPS.2022.3167453
    20. Lu, M., Han, L., Zhao, Q. et al. Microchannel cooling technique for dissipating high heat flux on W/Cu flat-type mock-up for EAST divertor. Plasma Science and Technology, 2022, 24(9): 095602. DOI:10.1088/2058-6272/ac684c
    21. Zhang, X., Yin, L., Xu, T. et al. Conceptual Design of CFETR Divertor Dome for Remote Handling. IEEE Transactions on Plasma Science, 2022, 50(4): 996-1001. DOI:10.1109/TPS.2022.3156599
    22. Wan, B.N., Gong, X.Z., Liang, Y. et al. Advances in the long-pulse steady-state high beta H-mode scenario with active controls of divertor heat and particle fluxes in EAST. Nuclear Fusion, 2022, 62(4): 042010. DOI:10.1088/1741-4326/ac2993

    Other cited types(0)

Catalog

    Article views (173) PDF downloads (104) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return