Advanced Search+
Shida XU (胥世达), Yun WU (吴云), Feilong SONG (宋飞龙), Xin CHEN (陈鑫), Di JIN (金迪). Experimental investigation on DBD plasma reforming hydrocarbon blends[J]. Plasma Science and Technology, 2021, 23(8): 85509-085509. DOI: 10.1088/2058-6272/ac0c07
Citation: Shida XU (胥世达), Yun WU (吴云), Feilong SONG (宋飞龙), Xin CHEN (陈鑫), Di JIN (金迪). Experimental investigation on DBD plasma reforming hydrocarbon blends[J]. Plasma Science and Technology, 2021, 23(8): 85509-085509. DOI: 10.1088/2058-6272/ac0c07

Experimental investigation on DBD plasma reforming hydrocarbon blends

Funds: This research was supported by National Natural Science Foundation of China (Nos. 91941105, 91941301, 51790511).
More Information
  • Received Date: March 21, 2021
  • Revised Date: June 13, 2021
  • Accepted Date: June 15, 2021
  • To improve the 'detonation-supporting' performance of fuel-rich catalytic combustion products, DBD plasma, stimulated by adjustable nanosecond pulse power supply, was used to further regulate the components and concentrations of the hydrocarbon blends. In this paper, the parameters including load voltage, frequency, rising (falling) edge, pulse width and feeding flow rate were changed respectively, and the corresponding concentration and proportion change of the components in blend gas were investigated. According to the experiment result, it was found that when the discharge frequency is low, the plasma mainly promotes the transformation of light gaseous substances, while it mainly promotes the conversion to heavy hydrocarbons when the frequency is larger. Increasing load voltage will strengthen this trend. The controlling and reforming effect of plasma on the blend gas will decrease with the increase of voltage rising (falling) edge and the feeding flow rate. The regulation effect will be strengthened with the increase of pulse width under 200 ns. With the increase of discharge intensity, the 'carbon' settles on the walls of the reactor, which will change the dielectric constant, leading to the loss of control of the discharge.
  • [1]
    Frolov S M et al 2015 Int. J. Hydrog. Energy 40 1616
    [2]
    Frolov S M, Aksenov V S and Ivanov V S 2015 Int. J. Hydrog.Energy 40 6970
    [3]
    Wilhite J et al 2016 Investigation of a rotating detonation engine using ethylene-air mixtures Proc. 54th AIAA Aerospace Sciences Meeting (San Diego, USA) (AIAA) (https://doi.org/10.2514/6.2016-1650)
    [4]
    Anand V et al 2018 Exp. Therm. Fluid Sci. 92 314
    [5]
    Zhong Y P et al 2018 Int. J. Hydrog. Energy 43 14787
    [6]
    Zhou S B et al 2019 Acta Astronaut. 157 310
    [7]
    Frolov S M et al 2017 Int. J. Hydrog. Energy 42 16808
    [8]
    Song F L et al 2020 Fuel 270 117548
    [9]
    Le Naour B, Falempin F H and Coulon K 2017 MBDA R&T effort regarding continuous detonation wave engine for propulsion-status in 2016 Proc. 21st AIAA Int. Space Planes and Hypersonics Technologies Conf. (Xiamen, China) (AIAA) (https://doi.org/10.2514/6.2017-2325)
    [10]
    Lentsch A et al 2005 Overview of current French activities on PDRE and continuous detonation wave rocket engines Proc. AIAA/CIRA 13th Int. Space Planes and Hypersonics Systems and Technologies Conf. (Capua, Italy) (AIAA) (https://doi.org/10.2514/6.2005-3232)
    [11]
    Austin J M and Shepherd J E 2003 Combust. Flame 132 73
    [12]
    Brabbs T A and Merritt S A 1993 Fuel-rich catalytic combustion of a high density fuel NASA Technical Paper 3281
    [13]
    St. George A et al 2016 Acta Astronaut. 128 194
    [14]
    Anand V and Gutmark E 2018 Flow Turbul. Combust. 101 869
    [15]
    Wang Y F et al 2010 Int. J. Hydrog. Energy 35 135
    [16]
    Khosravi A et al 2018 Plasma Chem. Plasma Process. 38 365
    [17]
    Jahanmiri A et al 2012 Chem. Eng. J. 191 416
    [18]
    Wang Q et al 2009 Plasma Chem. Plasma Process. 29 217
    [19]
    Song F L et al 2019 Int. J. Hydrog. Energy 44 3569
    [20]
    Song F L et al 2017 Plasma Sci. Technol. 19 125502
    [21]
    Frolov S M et al 2003 J. Propuls. Power 19 573
    [22]
    Frolov S M et al 2005 Shock Waves 14 175
    [23]
    Rakitin A E and Starikovskii A Y 2008 Combust. Flame 155 343
    [24]
    Gray J A T and Lacoste D A 2019 Combust. Flame 199 258
    [25]
    Aerojet Rocketdyne of DE Inc 2015 System and method of combustion for sustaining a continuous detonation wave with transient plasma US Patent Specification 9046058
    [26]
    Tsolas N and Yetter R A 2017 Combust. Flame 176 534
    [27]
    Xu S D et al 2019 Plasma Sci. Technol. 21 085503
    [28]
    Zhang K et al 2021 Int. J. Hydrog. Energy 46 9019
    [29]
    Tsolas N, Yetter R A and Adamovich I V 2017 Combust.Flame 176 462
    [30]
    Togai K, Tsolas N and Yetter R A 2016 Kinetics of plasmaassisted oxidation of methane Proc. 54th AIAA Aerospace Sciences Meeting (San Diego, USA) (AIAA) (https://doi.org/10.2514/6.2016-0192)
    [31]
    Eckert Z et al 2018 J. Phys. D: Appl. Phys. 51 374002
    [32]
    Wu Y et al 2015 Plasma Process. Polym. 12 642
    [33]
    Shershunova E A et al 2015 Acta Polytech. 55 59
    [34]
    Ozkan A et al 2016 Plasma Sources Sci. Technol. 25 045016
  • Cited by

    Periodical cited type(4)

    1. Yang, Y., Sun, B., Liu, J. et al. Effects of discharge frequency on the conversion of n-hexadecane by pulsed liquid-phase discharge in recycle and batch devices. Journal of the Energy Institute, 2024. DOI:10.1016/j.joei.2024.101807
    2. Zhang, D., Yang, X., Liu, F. et al. Effect of H2O Volume Fraction on the Uniformity of Nanosecond Pulsed N2 DBD | [H2O 体积分数对纳秒脉冲氮气 DBD 均匀性的影响]. Gaodianya Jishu/High Voltage Engineering, 2024, 50(9): 4252-4260. DOI:10.13336/j.1003-6520.hve.20231093
    3. Li, M., Wang, X., Zhao, Y. et al. Influence of Nanosecond Pulse Voltage Amplitude and Rising/Falling Edge Time on the Uniformity of Atmospheric Pressure N2 DBD | [纳秒脉冲电压幅值和上升/下降沿时间对大气压氮气 DBD 均匀性的影响]. Gaodianya Jishu/High Voltage Engineering, 2024, 50(2): 852-860. DOI:10.13336/j.1003-6520.hve.20222062
    4. Lim, M., Nimelnair, S., Lea-Langton, A.R. Reforming of Fluctuating Biogas Compositions with Non-thermal Plasma for Enhancement of Spark Ignition Engine Performance. Plasma Chemistry and Plasma Processing, 2022, 42(2): 283-301. DOI:10.1007/s11090-021-10219-x

    Other cited types(0)

Catalog

    Article views (115) PDF downloads (120) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return