Advanced Search+
Rui FAN (樊瑞), Yaogong WANG (王耀功), Xiaoning ZHANG (张小宁), Zhentao TU (屠震涛), Jun ZHANG (张军). The regulation of memory effect and its influence on discharge properties of a dielectric barrier discharge driven by bipolar pulse at atmospheric-pressure nitrogen[J]. Plasma Science and Technology, 2021, 23(10): 105401. DOI: 10.1088/2058-6272/ac0da5
Citation: Rui FAN (樊瑞), Yaogong WANG (王耀功), Xiaoning ZHANG (张小宁), Zhentao TU (屠震涛), Jun ZHANG (张军). The regulation of memory effect and its influence on discharge properties of a dielectric barrier discharge driven by bipolar pulse at atmospheric-pressure nitrogen[J]. Plasma Science and Technology, 2021, 23(10): 105401. DOI: 10.1088/2058-6272/ac0da5

The regulation of memory effect and its influence on discharge properties of a dielectric barrier discharge driven by bipolar pulse at atmospheric-pressure nitrogen

Funds: The authors would like to acknowledge the financial support provided by National Natural Science Foundation of China (Nos. 51807156 and 61771382), Projects of International Cooperation and Exchanges Shaanxi Province (No. 2018KW-034), China Postdoctoral Science Foundation (No. 2017M623174) and Central University Basic Scientific Research Operating Expenses (No. xpt012019041).
More Information
  • Received Date: January 19, 2021
  • Revised Date: June 14, 2021
  • Accepted Date: June 21, 2021
  • The regulation of memory effect that the residual charges generated during and after discharge act on the initiation and development of subsequent discharge is explored by adjusting the pulse parameters, which have an influence on the discharge characteristics. The memory effect is quantified by the measurement of 'wall voltage' through a series of reference capacitors. The influences of memory effect on the discharge properties corresponding to rising/falling time 50–500 ns, pulse width 0.5–1.5 μs, and frequency 200–600 Hz are analyzed. It is found that the 'wall voltage' increases from 1.4 kV to 2.4 kV with rising/falling time from 50 ns to 500 ns, it varies in the range of 0.18 kV with frequency of 200–600 Hz, and 0.17 kV with pulse width of 0.5–1.5 μs. The propagation velocity of wavelike ionization under the negative pulse slows down from 2184 km s−1 to 1026 km s−1 as the rising/falling time increases from 50 ns to 500 ns due to the weakening of the electric field by the surface memory effect. More intense and uniform emission can be achieved through faster rising/falling time and higher frequency based on the volume memory effect, while pulse width has less influence on the emission uniformity. Furthermore, similar laws are obtained for spectral and discharge intensity. Therefore, the memory effect is most effectively regulated by rising/falling time, and the discharge properties are affected by the surface and volume memory effect.
  • [1]
    Feng X X et al 2019 J. Sci. Food Agric. 99 5491
    [2]
    Rhallabi A et al 1991 IEEE Trans. Plasma Sci. 19 270
    [3]
    Nakano N, Petrović Z L and Makabe T 1994 Jpn. J. Appl.Phys. 33 2223
    [4]
    Stutzin G C, Rózsa K and Gallagher A 1993 J. Vac. Sci.Technol. A 11 647
    [5]
    Ricard A et al 1990 IEEE Trans. Plasma Sci. 18 940
    [6]
    Kline L E et al 1991 IEEE Trans. Plasma Sci. 19 278
    [7]
    Burnham R 1978 Appl. Phys. Lett. 33 156
    [8]
    Sugawara H, Satoh K and Sakai Y 2001 J. Phys. D: Appl.Phys. 34 3191
    [9]
    Cho S H et al 1995 Jpn. J. Appl. Phys., Part 2 34 L236
    [10]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [11]
    Mamun M A A, Furuta1 H and Hatta A 2018 Rev. Sci. Instrum.89 033506
    [12]
    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001
    [13]
    Zhao Z and Li J T 2020 High Volt. 5 569
    [14]
    Pejović M M et al 2012 J. Appl. Phys. 112 013301
    [15]
    Pejovic M M et al 2012 Phys. Plasmas 19 123512
    [16]
    Pejović M M, Nešić N T and Pejović M M 2014 IEEE Trans.Dielectr. Electr. Insul. 21 612
    [17]
    Fan R et al 2020 Phys. Plasmas 27 083508
    [18]
    Akishev Y et al 2021 Plasma Sources Sci. Technol. 30 025008
    [19]
    Nemschokmichal S et al 2018 Eur. Phys. J. D 72 89
    [20]
    Akishev Y et al 2011 Plasma Sources Sci. Technol. 20 024005
    [21]
    Simeni M S et al 2018 Plasma Sources Sci. Technol. 27 104001
    [22]
    Höft H et al 2014 J. Phys. D: Appl. Phys. 47 465206
    [23]
    Bourdon A, Bonaventura Z and Celestin S 2010 Plasma Sources Sci. Technol. 19 034012
    [24]
    Nijdam S et al 2016 Plasma Sources Sci. Technol. 25 044001
    [25]
    Huang B D et al 2020 Plasma Sources Sci. Technol. 29 044001
    [26]
    Lu X et al 2014 Phys. Rep. 540 123
    [27]
    Nie L et al 2013 IEEE Trans. Plasma Sci. 41 1648
    [28]
    Lu X P et al 2009 IEEE Trans. Plasma Sci. 37 647
    [29]
    Martens T, Bogaerts A and Van Dijk J 2010 Appl. Phys. Lett.96 131503
    [30]
    Huang B D et al 2018 J. Phys. D: Appl. Phys. 51 225202
    [31]
    Pan J et al 2014 Plasma Sources Sci. Technol. 23 065019
    [32]
    Pan J et al 2015 IEEE Trans. Plasma Sci. 43 557
    [33]
    Wu S et al 2013 Plasma Process. Polym. 10 136
    [34]
    Komuro A, Ono R and Oda T 2013 Plasma Sources Sci.Technol. 22 045002
    [35]
    Pipa A V, Hoder T and Brandenburg R 2013 Contrib. Plasma Phys. 53 469
    [36]
    Wang Y G et al 2019 Phys. Plasmas 26 112103
    [37]
    Yang D Z et al 2010 J. Phys. D: Appl. Phys. 43 455202
    [38]
    Zhang R B et al 2013 IEEE Trans. Plasma Sci. 41 3268
    [39]
    Nie D X et al 2011 Spectrochim. Acta A: Mol. Biomol.Spectrosc. 79 1896
    [40]
    Liu Y et al 2019 IEEE Trans. Dielectr. Electr. Insul. 26 476
    [41]
    Zhao Z et al 2020 Plasma Sources Sci. Technol. 29 015016
    [42]
    Tarasenko V 2020 Plasma Sources Sci. Technol. 29 034001
    [43]
    Levko D, Yatom S and Krasik Y E 2018 J. Appl. Phys. 123 083303
    [44]
    Ono R, Nakagawa Y and Oda T 2011 J. Phys. D: Appl. Phys.44 485201
    [45]
    Fan R et al 2019 IEEE Trans. Plasma Sci. 47 4096
    [46]
    Pipa A V et al 2012 Rev. Sci. Instrum. 83 115112
    [47]
    Jiang H et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1101
    [48]
    Kettlitz M et al 2013 Plasma Sources Sci. Technol. 22 025003
    [49]
    Qiu J T et al 2018 IEEE Trans. Plasma Sci. 46 1943
  • Cited by

    Periodical cited type(10)

    1. Zhang, D., Yang, X., Liu, F. et al. Effect of H2O Volume Fraction on the Uniformity of Nanosecond Pulsed N2 DBD | [H2O 体积分数对纳秒脉冲氮气 DBD 均匀性的影响]. Gaodianya Jishu/High Voltage Engineering, 2024, 50(9): 4252-4260. DOI:10.13336/j.1003-6520.hve.20231093
    2. Chen, L., Wang, Y., Li, X. et al. Source-drain switching characteristics when coupled with a gate-controlled DBD in a microplasma switch. Journal of Physics D: Applied Physics, 2024, 57(26): 265201. DOI:10.1088/1361-6463/ad32f4
    3. Svandova, L., Pazderka, M., Pribyl, R. et al. Complex characterisation of Cr-doped α-Al2O3 for DBD applications. Journal of Physics D: Applied Physics, 2024, 57(17): 175201. DOI:10.1088/1361-6463/ad1f30
    4. Kim, S.-H., Yun, U.-H., Kim, J.-G. Characteristics of high-repetition-rate bipolar pulse DBD under various electrical conditions in atmospheric-pressure air. Journal of Physics D: Applied Physics, 2024, 57(12): ad172a. DOI:10.1088/1361-6463/ad172a
    5. Li, M., Wang, X., Zhao, Y. et al. Influence of Nanosecond Pulse Voltage Amplitude and Rising/Falling Edge Time on the Uniformity of Atmospheric Pressure N2 DBD | [纳秒脉冲电压幅值和上升/下降沿时间对大气压氮气 DBD 均匀性的影响]. Gaodianya Jishu/High Voltage Engineering, 2024, 50(2): 852-860. DOI:10.13336/j.1003-6520.hve.20222062
    6. Liu, F., Li, S., Zhao, Y. et al. The effect of pulse voltage rise rate on the polypropylene surface hydrophilic modification by ns pulsed nitrogen DBD. Plasma Science and Technology, 2023, 25(10): 104001. DOI:10.1088/2058-6272/acd529
    7. Xiong, Z., Wang, Y., Li, M. Classification of DC discharge modes based on acoustic signal. Physica Scripta, 2023, 98(1): 015613. DOI:10.1088/1402-4896/acab98
    8. Viegas, P., Slikboer, E., Bonaventura, Z. et al. Quantification of surface charging memory effect in ionization wave dynamics. Scientific Reports, 2022, 12(1): 1181. DOI:10.1038/s41598-022-04914-8
    9. Wang, Y., Xu, L., Jiang, S. et al. Solid-State Linear Transformer Driver Based on Full-Bridge Bricks. IEEE Transactions on Plasma Science, 2022, 50(5): 1269-1275. DOI:10.1109/TPS.2022.3162956
    10. Li, S., Ding, Y., Zhao, Y. et al. Effect of pulse voltage slew rate on the uniformity of polypropylene surface hydrophilic modification by nanosecond pulsed dielectric barrier discharge. 2022. DOI:10.1109/CEIDP55452.2022.9985297

    Other cited types(0)

Catalog

    Article views (89) PDF downloads (89) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return