Advanced Search+
Zhe DING (丁哲), Jingfeng YAO (姚静锋), Ying WANG (王莹), Chengxun YUAN (袁承勋), Zhongxiang ZHOU (周忠祥), Anatoly A KUDRYAVTSEV, Ruilin GAO (高瑞林), Jieshu JIA (贾洁姝). Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column[J]. Plasma Science and Technology, 2021, 23(9): 95403-095403. DOI: 10.1088/2058-6272/ac125d
Citation: Zhe DING (丁哲), Jingfeng YAO (姚静锋), Ying WANG (王莹), Chengxun YUAN (袁承勋), Zhongxiang ZHOU (周忠祥), Anatoly A KUDRYAVTSEV, Ruilin GAO (高瑞林), Jieshu JIA (贾洁姝). Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column[J]. Plasma Science and Technology, 2021, 23(9): 95403-095403. DOI: 10.1088/2058-6272/ac125d

Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column

Funds: The research has been financially supported by National Natural Science Foundation of China (Nos. 11775062, 11805130 and 11905125) and the Shanghai Sailing Program (Nos. 19YF1420900 and 18YF1422200).
More Information
  • Received Date: April 26, 2021
  • Revised Date: July 04, 2021
  • Accepted Date: July 06, 2021
  • This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma. Dust in a plasma has a large impact on the properties of the plasma. According to a probe diagnostic experiment on a dust-free plasma combined with machine learning, an experiment on a dusty plasma is designed and carried out. Using a specific experimental device, dusty plasma with a stable and controllable dust particle density is generated. A Langmuir probe is used to measure the electron density and electron temperature under different pressures, discharge currents, and dust particle densities. The diagnostic result is processed through a machine learning algorithm, and the error of the predicted results under different pressures and discharge currents is analyzed, from which the law of the machine learning results changing with the pressure and discharge current is obtained. Finally, the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.
  • [1]
    Demidov V I, Ratynskaia S V and Rypdal K 2002 Rev. Sci.Instrum. 73 3409
    [2]
    Sukhinin G I and Fedoseev A V 2010 Phys. Rev. E 81 016402
    [3]
    Polyakov D N et al 2010 Phys. Scr. 82 055501
    [4]
    Goertz C K 1989 Rev. Geophys. 27 271
    [5]
    Liang Y G et al 2020 Plasma Sci. Technol. 22 034003
    [6]
    Shumova V V, Polyakov D N and Vasilyak L M 2017 Plasma Sources Sci. Technol. 26 035011
    [7]
    Hong Y H et al 2017 Plasma Sci. Technol. 19 055301
    [8]
    Omrani M, Amrollahi R and Iraji D 2016 Plasma Sources Sci.Technol. 25 065011
    [9]
    Liang Y G et al 2016 IEEE Trans. Plasma Sci. 44 2965
    [10]
    Tian R H et al 2019 Plasma Sci. Technol. 21 115404
    [11]
    Saifutdinov A I and Sysoev S S 2021 Plasma Sources Sci.Technol. 30 017001
    [12]
    Khomenko A and Macheret S 2020 Appl. Phys. Lett. 116 023501
    [13]
    Zhou C et al 2021 Plasma Sci. Technol. 23 064001
    [14]
    Yuan C X et al 2018 Phys. Plasmas 25 104501
    [15]
    Godyak V A and Alexandrovich B M 2015 J. Appl. Phys. 118 233302
    [16]
    Yuan C X et al 2019 Plasma Sources Sci. Technol. 28 067001
    [17]
    Polyakov D N, Shumova V V and Vasilyak L M 2017 Plasma Phys. Rep. 43 397
    [18]
    Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526
    [19]
    Chalaturnyk J and Marchand R 2019 Front. Phys. 7 63
    [20]
    Churchill R M et al 2020 Phys. Plasmas 27 062510
    [21]
    Ding Z et al 2019 IEEE Trans. Plasma Sci. 47 4391
    [22]
    Ding Z et al 2021 AIP Adv. 11 045028
    [23]
    Liang Y G et al 2018 Phys. Plasmas 25 023701
    [24]
    Krizhevsky A, Sutskever I and Hinton G E 2017 Commun.ACM 60 84
  • Cited by

    Periodical cited type(10)

    1. Skvortsov, I.V., Shemakhin, A.Y., Danilov, I.Y. et al. Prediction of Characteristics of Inductive Coupled Radio Frequency Discharge at Low Pressure in One-Dimensional Approximation Using Neural Network Approach. High Energy Chemistry, 2024, 58(Suppl 3): S421-S424. DOI:10.1134/S0018143924701273
    2. Liang, C., Huang, D., Lu, S. et al. Full information of system properties inferred from individual particle dynamics. Physics of Plasmas, 2024, 31(11): 113702. DOI:10.1063/5.0239733
    3. Joshi-Thompson, J., Ramisch, M. A neural network for the analysis of Langmuir-probe characteristics. Plasma Physics and Controlled Fusion, 2024, 66(10): 105015. DOI:10.1088/1361-6587/ad7289
    4. Wang, J., Zhou, Y., Du, Q.F. et al. A bidirectional long short-term memory network for electron density diagnostic with double probe. Measurement Science and Technology, 2023, 34(12): 125037. DOI:10.1088/1361-6501/acf77a
    5. Liang, C., Huang, D., Lu, S. et al. Determining global property of dusty plasma from single particle dynamics using machine learning. Physical Review Research, 2023, 5(3): 033086. DOI:10.1103/PhysRevResearch.5.033086
    6. Anirudh, R., Archibald, R., Asif, M.S. et al. 2022 Review of Data-Driven Plasma Science. IEEE Transactions on Plasma Science, 2023, 51(7): 1750-1838. DOI:10.1109/TPS.2023.3268170
    7. Yu, W., Cho, J., Burton, J.C. Extracting forces from noisy dynamics in dusty plasmas. Physical Review E, 2022, 106(3): 035303. DOI:10.1103/PhysRevE.106.035303
    8. Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7
    9. Wang, J., Ji, W., Du, Q. et al. A Long Short-Term Memory Network for Plasma Diagnosis from Langmuir Probe Data. Sensors, 2022, 22(11): 4281. DOI:10.3390/s22114281
    10. Zheng, S., Nie, Q., Huang, T. et al. Improvement of atmospheric jet-array plasma uniformity assisted by artificial neural networks. Plasma Science and Technology, 2022, 25(2): 025403. DOI:10.1088/2058-6272/ac8dd6

    Other cited types(0)

Catalog

    Article views (137) PDF downloads (146) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return