Advanced Search+
Kai ZHAO (赵凯), Yongxin LIU (刘永新), Quanzhi ZHANG (张权治), Demetre J ECONOMOU, Younian WANG. Magnetic probe diagnostics of nonlinear standing waves and bulk ohmic electron power absorption in capacitive discharges[J]. Plasma Science and Technology, 2021, 23(11): 115404. DOI: 10.1088/2058-6272/ac1cce
Citation: Kai ZHAO (赵凯), Yongxin LIU (刘永新), Quanzhi ZHANG (张权治), Demetre J ECONOMOU, Younian WANG. Magnetic probe diagnostics of nonlinear standing waves and bulk ohmic electron power absorption in capacitive discharges[J]. Plasma Science and Technology, 2021, 23(11): 115404. DOI: 10.1088/2058-6272/ac1cce

Magnetic probe diagnostics of nonlinear standing waves and bulk ohmic electron power absorption in capacitive discharges

Funds: This work has been financially supported by National Natural Science Foundation of China (NSFC) (Nos. 12005035 and 11935005), China Postdoctoral Science Foundation (Nos. 2020M670741 and 2021T140085), and Fundamental Research Funds for the Central Universities (No. DUT20LAB201). DJE is grateful to National Science Foundation (No. PHY-1500518) and to Department of Energy Office of Fusion Energy Science (No. DE-SC0001939) for financial support.
More Information
  • Received Date: May 23, 2021
  • Revised Date: August 10, 2021
  • Accepted Date: August 10, 2021
  • It is recognized that standing wave effects appearing in large-area, very-high-frequency capacitively coupled plasma (CCP) reactors cause center-high plasma non-uniformity. Using a high-frequency magnetic probe, we present a direct experimental diagnostic of the nonlinear standing waves and bulk ohmic electron power absorption dynamics in low pressure CCP discharges for different driving frequencies of 13.56, 30, and 60 MHz. The design, principle, calibration, and validation of the probe are described in detail. Spatial structures of the harmonics of the magnetic field, determined by the magnetic probe, were used to calculate the distributions of the harmonic current and the corresponding ohmic electron power deposition, providing insights into the behavior of nonlinear harmonics. At a low driving frequency, i.e. 13.56 MHz, no remarkable nonlinear standing waves were identified and the bulk ohmic electron power absorption was observed to be negligible. The harmonic magnetic field/current was found to increase dramatically with the driving frequency, due to decreased sheath reactance and more remarkable nonlinear standing waves at a higher driving frequency, leading to the enhancements of the ohmic heating and the plasma density in the bulk, specifically at the electrode center. At a high driving frequency, i.e. 60 MHz, the high-order harmonic current density and the corresponding ohmic electron power absorption exhibited a similar node structure, with the main peak on axis, and one or more minor peaks between the electrode center and the edge, contributing to the center-high profile of the plasma density.
  • [1]
    Xu P et al 2018 Appl. Phys. Lett. 112 242402
    [2]
    Godyak V A and Kolobov V I 1997 Phys. Rev. Lett. 79 4589
    [3]
    Stenzel R L and Urrutia J M 2015 Phys. Rev. Lett. 114 205005
    [4]
    Takahashi K et al 2016 Phys. Rev. Lett. 116 135001
    [5]
    Reilly M P, Lewis W and Miley G H 2009 Rev. Sci. Instrum.80 053508
    [6]
    Reynolds J A, Blevin H A and Thonemann P C 1969 Phys.Rev. Lett. 22 762
    [7]
    Kolobov V I and Economou D J 1997 Plasma Sources Sci.Technol. 6 R1
    [8]
    Godyak V A et al 1998 Phys. Rev. Lett. 80 3264
    [9]
    Lee H C and Chung C W 2012 Appl. Phys. Lett. 101 244104
    [10]
    Ding Z F, Sun B and Huo W G 2015 Phys. Plasmas 22 063504
    [11]
    Han J et al 2019 Phys. Plasmas 26 103503
    [12]
    Turner M M 1993 Phys. Rev. Lett. 71 1844
    [13]
    Cunge G et al 1999 Plasma Sources Sci. Technol. 8 576
    [14]
    Turner M M and Lieberman M A 1999 Plasma Sources Sci.Technol. 8 313
    [15]
    Xu S et al 2001 Phys. Plasmas 8 2549
    [16]
    Godyak V A, Piejak R B and Alexandrovich B M 1999 J. Appl. Phys. 85 703
    [17]
    Everson E T et al 2009 Rev. Sci. Instrum. 80 113505
    [18]
    Collette A and Gekelman W 2010 Phys. Rev. Lett. 105 195003
    [19]
    Koizumi H et al 2007 Phys. Plasmas 14 033506
    [20]
    Sekine H, Koizumi H and Komurasaki K 2021 AIP Adv. 11 015102
    [21]
    King J D et al 2014 Rev. Sci. Instrum. 85 083503
    [22]
    Delgado-Aparicio L et al 2013 Phys. Rev. Lett. 110 065006
    [23]
    Savrukhin P V and Shestakov E A 2012 Rev. Sci. Instrum. 83 013505
    [24]
    Liu Y et al 2014 Rev. Sci. Instrum. 85 11E802
    [25]
    Heeter R F et al 2000 Rev. Sci. Instrum. 71 4092
    [26]
    Chabert P 2007 J. Phys. D: Appl. Phys. 40 R63
    [27]
    Perret A et al 2005 Appl. Phys. Lett. 86 021501
    [28]
    Abdel-Fattah E and Sugai H 2003 Appl. Phys. Lett. 83 1533
    [29]
    Jariwala C et al 2008 Appl. Phys. Lett. 93 191502
    [30]
    Lieberman M A et al 2002 Plasma Sources Sci. Technol. 11 283
    [31]
    Sansonnens L and Schmitt J 2003 Appl. Phys. Lett. 82 182
    [32]
    Perret A et al 2003 Appl. Phys. Lett. 83 243
    [33]
    Chabert P et al 2004 Phys. Plasmas 11 1775
    [34]
    Sansonnens L, Howling A A and Hollenstein C 2006 Plasma Sources Sci. Technol. 15 302
    [35]
    Hebner G A et al 2006 Plasma Sources Sci. Technol. 15 879
    [36]
    Lee I, Graves D B and Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018
    [37]
    Rauf S, Bera K and Collins K 2008 Plasma Sources Sci.Technol. 17 035003
    [38]
    Eremin D et al 2013 J. Phys. D: Appl. Phys. 46 084017
    [39]
    Schüngel E et al 2015 Appl. Phys. Lett. 106 054108
    [40]
    Liu Y X et al 2015 Plasma Sources Sci. Technol. 24 025013
    [41]
    Zhao K et al 2018 Plasma Sources Sci. Technol. 27 055017
    [42]
    Zhao K et al 2016 Phys. Plasmas 23 123512
    [43]
    Rauf S, Bera K and Collins K 2010 Plasma Sources Sci. Technol. 19 015014
    [44]
    Sharma S et al 2019 J. Phys. D: Appl. Phys. 52 365201
    [45]
    Wilczek S et al 2018 Plasma Sources Sci. Technol. 27 125010
    [46]
    Sharma S et al 2016 Phys. Plasmas 23 110701
    [47]
    Sharma S et al 2019 Phys. Plasmas 26 103508
    [48]
    Sharma S et al 2020 Plasma Sources Sci. Technol. 29 045003
    [49]
    Czarnetzki U, Mussenbrock T and Brinkmann R P 2006 Phys.Plasmas 13 123503
    [50]
    Mussenbrock T et al 2008 Phys. Rev. Lett. 101 085004
    [51]
    Miller P A et al 2006 Plasma Sources Sci. Technol. 15 889
    [52]
    Sawada I et al 2014 Jpn. J. Appl. Phys. 53 03DB01
    [53]
    Lane B et al 2016 J. Vac. Sci. Technol. A 34 031302
    [54]
    Lieberman M A et al 2015 Plasma Sources Sci. Technol. 24 055011
    [55]
    Wen D Q et al 2016 Plasma Sources Sci. Technol. 26 015007
    [56]
    Zhao K et al 2019 Phys. Rev. Lett. 122 185002
    [57]
    Wilczek S et al 2016 Phys. Plasmas 23 063514
    [58]
    Franck C M, Grulke O and Klinger T 2002 Rev. Sci. Instrum.73 3768
    [59]
    Black D C and Mayo R M 1996 Rev. Sci. Instrum. 67 1508
    [60]
    Messer S et al 2006 Rev. Sci. Instrum. 77 115104
    [61]
    Zhao K et al 2018 Rev. Sci. Instrum. 89 105104
    [62]
    Karkari S K, Ellingboe A R and Gaman C 2008 Appl. Phys.Lett. 93 071501
    [63]
    Gogna G S and Karkari S K 2010 Appl. Phys. Lett. 96 151503
    [64]
    Godyak V 2021 J. Appl. Phys. 129 041101
    [65]
    Gustrau F 2012 RF and Microwave Engineering: Fundamentals of Wireless Communications (New York:Wiley)
    [66]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [67]
    Yuan Q H et al 2008 J. Phys. D: Appl. Phys. 41 205209
    [68]
    Kawamura E, Lieberman M A and Graves D B 2014 Plasma Sources Sci. Technol. 23 064003
    [69]
    Turner M M 1995 Phys. Rev. Lett. 75 1312
    [70]
    Mussenbrock T and Brinkmann R P 2006 Appl. Phys. Lett. 88 151503
    [71]
    Gozadinos G, Turner M M and Vender D 2001 Phys. Rev. Lett.87 135004
    [72]
    Kaganovich I D 2002 Phys. Rev. Lett. 89 265006
    [73]
    Sharma S and Turner M M 2013 Plasma Sources Sci. Technol.22 035014
    [74]
    Kawamura E, Lieberman M A and Lichtenberg A J 2006 Phys.Plasmas 13 053506
    [75]
    Lafleur T, Chabert P and Booth J P 2014 Plasma Sources Sci.Technol. 23 035010
    [76]
    Wilczek S et al 2020 J. Appl. Phys.J. Appl. Phys. 127 181101
    [77]
    Surendra M and Dalvie M 1993 Phys. Rev. E 48 3914
    [78]
    Schulze J et al 2018 Plasma Sources Sci. Technol. 27 055010
  • Cited by

    Periodical cited type(7)

    1. Osca Engelbrecht, M., Ridgers, C.P., Dedrick, J. et al. Particle-in-cell simulations of high frequency capacitively coupled plasmas including spatially localised inductive-like heating. Plasma Sources Science and Technology, 2023, 32(12): 125003. DOI:10.1088/1361-6595/ad0fb1
    2. Eremin, D., Kemaneci, E., Matsukuma, M. et al. Modeling of very high frequency large-electrode capacitively coupled plasmas with a fully electromagnetic particle-in-cell code. Plasma Sources Science and Technology, 2023, 32(4): 044007. DOI:10.1088/1361-6595/accecb
    3. Sun, G., Zhang, S., Sun, A. et al. On the electron sheath theory and its applications in plasma-surface interactions. Plasma Science and Technology, 2022, 24(9): 095401. DOI:10.1088/2058-6272/ac6aa7
    4. Xing, Y., Qiao, N., Yu, J. et al. Spectroscopic depth profilometry of organic thin films upon inductively coupled plasma etching. Review of Scientific Instruments, 2022, 93(7): 073903. DOI:10.1063/5.0088718
    5. Vass, M., Wilczek, S., Derzsi, A. et al. Evolution of the bulk electric field in capacitively coupled argon plasmas at intermediate pressures. Plasma Sources Science and Technology, 2022, 31(4): 045017. DOI:10.1088/1361-6595/ac6361
    6. Su, Z.-X., Shi, D.-H., Liu, Y.-X. et al. Radially-dependent ignition process of a pulsed capacitively coupled RF argon plasma over 300 mm-diameter electrodes: Multi-fold experimental diagnostics. Plasma Sources Science and Technology, 2021, 30(12): 125013. DOI:10.1088/1361-6595/ac3e3f
    7. Zhao, K., Guo, Y.-Q., Zhang, Q.-Z. et al. Experimental Investigation of Nonlinear Standing Waves in DC/VHF Hybrid Capacitive Discharges. IEEE Transactions on Plasma Science, 2021, 49(11): 3392-3397. DOI:10.1109/TPS.2021.3120596

    Other cited types(0)

Catalog

    Article views (105) PDF downloads (134) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return