Advanced Search+
Rajesh Prakash GURAGAIN, Hom Bahadur BANIYA, Santosh DHUNGANA, Ganesh Kuwar CHHETRI, Binita SEDHAI, Niroj BASNET, Aavash SHAKYA, Bishnu Prasad PANDEY, Suman Prakash PRADHAN, Ujjwal Man JOSHI, Deepak Prasad SUBEDI. Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus)[J]. Plasma Science and Technology, 2022, 24(1): 015502. DOI: 10.1088/2058-6272/ac3476
Citation: Rajesh Prakash GURAGAIN, Hom Bahadur BANIYA, Santosh DHUNGANA, Ganesh Kuwar CHHETRI, Binita SEDHAI, Niroj BASNET, Aavash SHAKYA, Bishnu Prasad PANDEY, Suman Prakash PRADHAN, Ujjwal Man JOSHI, Deepak Prasad SUBEDI. Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus)[J]. Plasma Science and Technology, 2022, 24(1): 015502. DOI: 10.1088/2058-6272/ac3476

Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus)

More Information
  • Corresponding author:

    Rajesh Prakash GURAGAIN, E-mail: rayessprakash@gmail.com

    Hom Bahadur BANIYA, E-mail: hombaniya@gmail.com

  • Received Date: May 17, 2021
  • Revised Date: October 26, 2021
  • Accepted Date: October 27, 2021
  • Available Online: March 18, 2024
  • Published Date: November 21, 2021
  • The effect on the germination and seedling growth of radish (Raphanus sativus) seeds were examined employing a dielectric barrier discharge (DBD) at atmospheric pressure and room temperature for various treatment time. DBD plasma using argon gas of flow rate 2 l m-1 was employed in this study. Radish seeds were treated with DBD plasma for 1–5 min, respectively. Germination characteristics, seedling growth parameters, the contact angle of the seed coat, water uptake capacity, mass loss, the temperature of the seeds, chlorophyll, and carotenoid contents of the seedlings were measured before and after the DBD plasma treatments. Plasma treatment of radish seeds significantly increased germination-related characters, including germination percentage, fresh and dry weight, vigor index, and total carotenoids contents. However, the cumulative production rate was found to be decreased. Results from the experiment indicate an acceleration in the water uptake of the radish seeds and make the seed surface hydrophilic by plasma treatment. Scanning electron microscopy analysis showed that etching effects on the seed coat occurred after the argon plasma treatments, which affected the wettability of the radish seed. The experimental findings showed that seeds being treated by DBD plasma for 2 and 3 min had a positive effect on the germination and seedling growth of radish.

  • The authors are very thankful to Prof Dr Eun Ha Choi, and Dr Bhagirath Ghimire (Kwangwoon University, Korea), Milan Simek (Institute of Plasma Physics, The Czech Academy of Sciences), and Dr Johannes Gruenwald (Gruenwald Laboratories) for their valuable help and support. The corresponding author would also like to thank Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal for providing financial and technical support. The authors are also grateful to all the researchers of the Department of Physics, Kathmandu University who provided valuable suggestions for the completion of this work.

  • [1]
    Šimek M et al 2019 Plasma Process. Polym. 16 1700250 doi: 10.1002/ppap.201700250
    [2]
    Bonizzoni G and Vassallo E 2002 Vacuum 64 327 doi: 10.1016/S0042-207X(01)00341-4
    [3]
    Šerá B and Šerý M 2018 Plasma Sci. Technol. 20 044012 doi: 10.1088/2058-6272/aaacc6
    [4]
    Cvelbar U et al 2019 Plasma Process. Polym. 16 1700228 doi: 10.1002/ppap.201700228
    [5]
    Bruggeman P and Leys C 2009 J. Phys. D: Appl. Phys. 42 053001 doi: 10.1088/0022-3727/42/5/053001
    [6]
    Zahoranová A et al 2016 Plasma Chem. Plasma Process. 36 397 doi: 10.1007/s11090-015-9684-z
    [7]
    Baniya H B et al 2021 J. Chem. 2021 6638939 doi: 10.1155/2021/6638939
    [8]
    Bekeschus S et al 2019 Plasma Process. Polym. 16 1800033 doi: 10.1002/ppap.201800033
    [9]
    Weltmann K D et al 2019 Plasma Process. Polym. 16 1800118 doi: 10.1002/ppap.201800118
    [10]
    Guragain R P et al 2021 Rev. Adhes. Adhes. 9 153
    [11]
    Ambrico P F et al 2020 J. Phys. D: Appl. Phys. 53 104001 doi: 10.1088/1361-6463/ab5b1b
    [12]
    Zhou R et al 2016 Sci. Rep. 6 35714 doi: 10.1038/srep35714
    [13]
    Brandenburg R et al 2019 Plasma Process. Polym. 16 1700238 doi: 10.1002/ppap.201700238
    [14]
    Pankaj S K et al 2018 Foods 7 4 doi: 10.3390/foods7010004
    [15]
    Štěpánová V et al 2018 Plasma Process. Polym. 15 1700076 doi: 10.1002/ppap.201700076
    [16]
    Phan K T K et al 2017 Int. J. Food Sci. Technol. 52 2127 doi: 10.1111/ijfs.13509
    [17]
    Randeniya L K and De Groot G J J B 2015 Plasma Process. Polym. 12 608 doi: 10.1002/ppap.201500042
    [18]
    Bhilwadikar T et al 2019 Compr. Rev. Food Sci. Food Saf. 18 1003 doi: 10.1111/1541-4337.12453
    [19]
    Sivachandiran L and Khacef A 2017 RSC Adv. 7 1822 doi: 10.1039/C6RA24762H
    [20]
    Ling L et al 2014 Sci. Rep. 4 5859 doi: 10.1038/srep05859
    [21]
    Calicioglu O et al 2019 Sustainability 11 222 doi: 10.3390/su11010222
    [22]
    Jiang J F et al 2014 Plasma Sci. Technol. 16 54 doi: 10.1088/1009-0630/16/1/12
    [23]
    Stolárik T et al 2015 Plasma Chem. Plasma Process. 35 659 doi: 10.1007/s11090-015-9627-8
    [24]
    Šerá B et al 2010 IEEE Trans. Plasma Sci. 38 2963 doi: 10.1109/TPS.2010.2060728
    [25]
    Banihani S A 2017 Nutrients 9 1014 doi: 10.3390/nu9091014
    [26]
    Song J S et al 2020 Front. Plant Sci. 11 1 doi: 10.3389/fpls.2020.00001
    [27]
    Adhikari B, Adhikari M and Park G 2020 Appl. Sci. 10 6045 doi: 10.3390/app10176045
    [28]
    Sery M et al 2020 IEEE Trans. Plasma Sci. 48 939 doi: 10.1109/TPS.2020.2981600
    [29]
    Scholtz V et al 2019 J. Food Qual. 2019 7917825 doi: 10.1155/2019/6468018
    [30]
    Henselová M et al 2012 Biologia 67 490 doi: 10.2478/s11756-012-0046-5
    [31]
    Li L et al 2015 Sci. Rep. 5 13033 doi: 10.1038/srep13033
    [32]
    Tong J Y et al 2014 Plasma Sci. Technol. 16 260 doi: 10.1088/1009-0630/16/3/16
    [33]
    Hayashi N et al 2015 Japan. J. Appl. Phys. 54 06GD01 doi: 10.7567/JJAP.54.06GD01
    [34]
    Ji S H et al 2016 Arch. Biochem. Biophys. 605 117 doi: 10.1016/j.abb.2016.02.028
    [35]
    Wang C Q and He X N 2006 Surf. Coat. Technol. 201 3377 doi: 10.1016/j.surfcoat.2006.07.205
    [36]
    Šimek M, Pekárek S and Prukner V 2010 Plasma Chem. Plasma Process. 30 607 doi: 10.1007/s11090-010-9245-4
    [37]
    Nersisyan G and Graham W G 2004 Plasma Sources Sci. Technol. 13 582 doi: 10.1088/0963-0252/13/4/005
    [38]
    Kriegseis J et al 2011 J. Electrostat. 69 302 doi: 10.1016/j.elstat.2011.04.007
    [39]
    Manley T C 1943 Trans. Electrochem. Soc. 84 83 doi: 10.1149/1.3071556
    [40]
    Wagner H E et al 2003 Vacuum 71 417 doi: 10.1016/S0042-207X(02)00765-0
    [41]
    Tao X P, Lu R D and Li H 2012 Plasma Sci. Technol. 14 723 doi: 10.1088/1009-0630/14/8/08
    [42]
    Kim J H, Choi Y H and Hwang Y S 2006 Phys. Plasmas 13 093501 doi: 10.1063/1.2338282
    [43]
    Šimek M 2014 J. Phys. D: Appl. Phys. 47 463001 doi: 10.1088/0022-3727/47/46/463001
    [44]
    Homola T et al 2020 Plasma Sources Sci. Technol. 29 095014 doi: 10.1088/1361-6595/aba987
    [45]
    Guragain R P et al 2020 J. Technol. Space Plasmas 1 27 doi: 10.31281/jtsp.v1i1.11
    [46]
    Wang Y et al 2017 Plasma Sci. Technol. 19 115403 doi: 10.1088/2058-6272/aa861d
    [47]
    Šimek M et al 2018 Plasma Sources Sci. Technol. 27 055019 doi: 10.1088/1361-6595/aac240
    [48]
    Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2020 ‘NIST Atomic Spectra Database’ (version 5.8) (https://physics.nist.gov/asd)
    [49]
    Etzler F M 2013 Rev. Adhes. Adhes. 1 3 doi: 10.7569/RAA.2013.097301
    [50]
    Volin J C et al 2000 Crop Sci. 40 1706 doi: 10.2135/cropsci2000.4061706x
    [51]
    Zhang J J et al 2017 Sci. Rep. 7 41917 doi: 10.1038/srep41917
    [52]
    Copeland L O and McDonald M B 1999 Principles of Seed Science and Technology (Boston: Springer US)
    [53]
    Pérez-Pizá M C et al 2019 Heliyon 5 e01495 doi: 10.1016/j.heliyon.2019.e01495
    [54]
    Abdul-Baki A A and Anderson J D 1973 Crop Sci. 13 630 doi: 10.2135/cropsci1973.0011183X001300060013x
    [55]
    Bahadur B, Rajam M V, Sahijram L and Krishnamurthy K V 2015 Plant Biology and Biotechnology: Plant Diversity, Organization, Function and Improvement vol 1 (India: Springer)
    [56]
    Young A J 1991 Physiol. Plant. 83 702 doi: 10.1111/j.1399-3054.1991.tb02490.x
    [57]
    Sumanta N et al 2014 Res. J. Chem. Sci. 4 63
    [58]
    Fernandes F A N, Santos V O and Rodrigues S 2019 Food Res. Int. 115 16 doi: 10.1016/j.foodres.2018.07.042
    [59]
    Nabi F et al 2020 J. Anim. Physiol. Anim. Nutr. 104 1809 doi: 10.1111/jpn.13375
    [60]
    Molina R et al 2018 Sci. Rep. 8 16442 doi: 10.1038/s41598-018-34801-0
    [61]
    Lotfy K, Al-Harbi N A and El-raheem H A 2019 Plasma Chem. Plasma Process. 39 897 doi: 10.1007/s11090-019-09969-6
    [62]
    Varnagiris S et al 2020 Processes 8 1575 doi: 10.3390/pr8121575
    [63]
    Karmakar S et al 2021 Heliyon 7 e06458 doi: 10.1016/j.heliyon.2021.e06458
  • Related Articles

    [1]Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Wanpeng XU (徐万鹏), Dan ZHANG (张丹), Ying WANG (王莹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Mingxing JIN (金明星). Time-resolved spectroscopy of femtosecond laser-induced Cu plasma with spark discharge[J]. Plasma Science and Technology, 2019, 21(6): 65504-065504. DOI: 10.1088/2058-6272/ab0fa6
    [2]Lijuan DUAN (段丽娟), Nan JIANG (姜楠), Na LU (鲁娜), Kefeng SHANG (商克峰), Jie LI (李杰), Yan WU (吴彦). A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions[J]. Plasma Science and Technology, 2018, 20(5): 54009-054009. DOI: 10.1088/2058-6272/aaab42
    [3]Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601
    [4]Cheng ZHANG (章程), Jintao QIU (邱锦涛), Fei KONG (孔飞), Xingmin HOU (侯兴民), Zhi FANG (方志), Yu YIN (殷禹), Tao SHAO (邵涛). Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20(1): 14011-014011. DOI: 10.1088/2058-6272/aa8c6e
    [5]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [6]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08
    [7]WANG Yongjie(王永杰), YIN Zengqian(尹增谦). Structural and Electrical Properties of Sulfur-Doped Diamond Thin Films[J]. Plasma Science and Technology, 2014, 16(3): 255-259. DOI: 10.1088/1009-0630/16/3/15
    [8]JIANG Song(姜松), WEN Yiyong(文贻勇), LIU Kefu(刘克富). Yield of H 2 O 2 in Gas-Liquid Phase with Pulsed DBD[J]. Plasma Science and Technology, 2014, 16(1): 59-62. DOI: 10.1088/1009-0630/16/1/13
    [9]DI Lanbo, LI Xiaosong, ZHAO Tianliang, CHANG Dalei, LIU Qianqian, ZHU Aimin. Tuning Effect of N2 on Atmospheric-Pressure Cold Plasma CVD of TiO2 Photocatalytic Films[J]. Plasma Science and Technology, 2013, 15(1): 64-69. DOI: 10.1088/1009-0630/15/1/11
    [10]WANG Qiuying (王秋颖), LI Sen(李森), GU Fan(顾璠). Mechanism of Phase Transition from Liquid to Gas under Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2010, 12(5): 585-591.

Catalog

    Figures(24)  /  Tables(1)

    Article views (197) PDF downloads (430) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return