Citation: | Dongjie CUI, Xiaoxia HU, Yue YIN, Yupan ZHU, Jie ZHUANG, Xiaojie WANG, Ruonan MA, Zhen JIAO. Quality enhancement and microbial reduction of mung bean (Vigna radiata) sprouts by non-thermal plasma pretreatment of seeds[J]. Plasma Science and Technology, 2022, 24(4): 045504. DOI: 10.1088/2058-6272/ac529f |
Mung bean (Vigna radiata) sprouts are widely consumed worldwide due to their high nutritional value. However, the low yield and microbial contamination of mung bean sprouts seriously reduces their economic value. This study investigates the effects of non-thermal plasma on the quality and microbial reduction of mung bean sprouts by pretreatment of seeds in water for different times (0, 1, 3 and 6 min). The quality results showed that short-time plasma treatment (1 and 3 min) promoted seed germination and seedling growth, whereas long-time plasma treatment (6 min) had inhibitory effects. Plasma also had a similar dose effects on the total flavonoid and phenolic contents of mung bean sprouts. The microbiological results showed that plasma treatment achieved a reduction of native microorganisms ranging from 0.54 to 7.09 log for fungi and 0.29 to 6.80 log for bacteria at 96 h incubation. Meanwhile, plasma treatment could also efficiently inactivate artificially inoculated Salmonella typhimurium (1.83–6.22 log) and yeast (0.53–3.19 log) on mung bean seeds. The results of seed coat permeability tests and scanning electron microscopy showed that plasma could damage the seed coat structure, consequently increasing the electrical conductivity of mung bean seeds. The physicochemical analysis of plasma-treated water showed that plasma generated various long- and short-lived active species [nitric oxide radicals (NO·), hydroxyl radicals (·OH), singlet oxygen (1O2), hydrogen peroxide (H2O2), nitrate (NO3-), and nitrite (NO2-)] in water, thus the oxidizability, acidity and conductivity of plasma-treated water were all increased in a treatment time-dependent manner. The result for mimicked chemical mixtures confirmed the synergistic effect of activity of H2O2, NO3- and NO2- on bacterial inactivation and plant growth promotion. Taken together, these results imply that plasma pretreatment of mung bean seeds in water with moderate oxidizability and acidity is an effective method to improve the yield of mung bean sprouts and reduce microbial contamination.
This work was supported by National Natural Science Foundation of China (Nos. 11605159 and 11405147), Chinese Postdoctoral Science Foundation (No. 2017M612412), the Foundation of Key Technology Research Project of Henan Province (No. 182102311115), Key Discipline Construction Project of Zhengzhou University (No. 32410257) and Youth Innovation Project of Key Discipline of Zhengzhou University (No. XKZDQN202002), Natural Science Foundation of Henan Province (No. 202300410013).
[1] |
Aguilera Y et al 2014 J. Agric. Food Chem. 62 10736 doi: 10.1021/jf503613w
|
[2] |
Hou D Z et al 2019 Nutrients 11 1238 doi: 10.3390/nu11061238
|
[3] |
Chunkao S et al 2020 Foods 9 1406 doi: 10.3390/foods9101406
|
[4] |
Hou D Z et al 2020 Plant Foods Hum. Nutr. 75 547 doi: 10.1007/s11130-020-00845-9
|
[5] |
Zhou R W et al 2019 Innov. Food Sci. Emerg. Technol. 53 36 doi: 10.1016/j.ifset.2018.08.006
|
[6] |
Ashraf M and Akram N A 2009 Biotechnol. Adv. 27 744 doi: 10.1016/j.biotechadv.2009.05.026
|
[7] |
Li J Q et al 2021 Food Chem. 358 129915 doi: 10.1016/j.foodchem.2021.129915
|
[8] |
Zhou T et al 2020 Food Chem. 309 125759 doi: 10.1016/j.foodchem.2019.125759
|
[9] |
Živković S et al 2004 Seed Sci. Technol. 32 693 doi: 10.15258/sst.2004.32.3.05
|
[10] |
Dhayal M, Lee S Y and Park S U 2006 Vacuum 80 499 doi: 10.1016/j.vacuum.2005.06.008
|
[11] |
Moisan M et al 2002 Pure Appl. Chem. 74 349 doi: 10.1351/pac200274030349
|
[12] |
Guo Q et al 2018 Bioelectromagnetics 39 120 doi: 10.1002/bem.22088
|
[13] |
Park D P et al 2013 Curr. Appl. Phys. 13 S19 doi: 10.1016/j.cap.2012.12.019
|
[14] |
Zhang C L et al 2011 Food Control 22 792 doi: 10.1016/j.foodcont.2010.11.018
|
[15] |
Puač N, Gherardi M and Shiratani M 2018 Plasma Process. Polym. 15 1700174 doi: 10.1002/ppap.201700174
|
[16] |
Ma R N et al 2015 J. Hazard. Mater. 300 643 doi: 10.1016/j.jhazmat.2015.07.061
|
[17] |
Ma R et al 2014 Plasma Process. Polym. 11 822 doi: 10.1002/ppap.201300206
|
[18] |
Lu X P et al 2021 Phys. Plasmas 28 100501 doi: 10.1063/5.0067478
|
[19] |
Sharma R R and Demirci A 2003 Int. J. Food Microbiol. 86 231 doi: 10.1016/S0168-1605(02)00549-4
|
[20] |
Xiang Q S et al 2019 Innov. Food Sci. Emerg. Technol. 52 49 doi: 10.1016/j.ifset.2018.11.012
|
[21] |
Xu B J and Chang S K C 2007 J. Food Sci. 72 S159 doi: 10.1111/j.1750-3841.2006.00260.x
|
[22] |
Chen H H, Chen Y K and Chang H C 2012 Food Chem. 135 74 doi: 10.1016/j.foodchem.2012.04.092
|
[23] |
Zhang Q et al 2016 Environ. Sci. Technol. 50 3184 doi: 10.1021/acs.est.5b05108
|
[24] |
Xu H B et al 2019 J. Phys. D: Appl. Phys. 52 395201 doi: 10.1088/1361-6463/ab273d
|
[25] |
Zhou R W et al 2018 Green Chem. 20 5276 doi: 10.1039/C8GC02800A
|
[26] |
Yin M Q et al 2005 Plasma Sci. Technol. 7 3143 doi: 10.1088/1009-0630/7/5/020
|
[27] |
Kitazaki S et al 2012 Japan. J. Appl. Phys. 51 01AE01 doi: 10.7567/JJAP.51.01AE01
|
[28] |
Mitra A et al 2014 Food Bioprocess Technol. 7 645 doi: 10.1007/s11947-013-1126-4
|
[29] |
Jiang J F et al 2014 Plasma Sci. Technol. 16 54 doi: 10.1088/1009-0630/16/1/12
|
[30] |
Stolárik T et al 2015 Plasma Chem. Plasma Process. 35 659 doi: 10.1007/s11090-015-9627-8
|
[31] |
Cui D J et al 2019 Front. Plant Sci. 10 1322 doi: 10.3389/fpls.2019.01322
|
[32] |
Cheng H et al 2020 Phys. Plasmas 27 063514 doi: 10.1063/5.0008881
|
[33] |
Chon S U 2013 Curr. Pharm. Design 19 6112 doi: 10.2174/1381612811319340005
|
[34] |
Ganesan K and Xu B J 2018 Food Sci. Hum. We. 7 11 doi: 10.1016/j.fshw.2017.11.002
|
[35] |
Liu R H, Liu J R and Chen B Q 2005 J. Agric. Food Chem. 53 2341 doi: 10.1021/jf058010c
|
[36] |
Sun J and Liu R H 2006 Cancer Lett. 241 124 doi: 10.1016/j.canlet.2005.10.027
|
[37] |
Yoon H and Liu R H 2007 J. Agric. Food Chem. 55 3167 doi: 10.1021/jf0632379
|
[38] |
Fan L M et al 2020 J. Taibah Univ. Sci. 14 823 doi: 10.1080/16583655.2020.1778326
|
[39] |
National Advisory Committee on Microbiological Criteria for Foods 1999 Int. J. Food Microbiol. 52 123 doi: 10.1016/S0168-1605(99)00135-X
|
[40] |
Selcuk M, Oksuz L and Basaran P 2008 Bioresour. Technol. 99 5104 doi: 10.1016/j.biortech.2007.09.076
|
[41] |
Butscher D et al 2016 Int. J. Food Microbiol. 238 222 doi: 10.1016/j.ijfoodmicro.2016.09.006
|
[42] |
Štěpánová V et al 2018 Plasma Process. Polym. 15 1700076 doi: 10.1002/ppap.201700076
|
[43] |
Zhou R W et al 2016 Sci. Rep. 6 32603 doi: 10.1038/srep32603
|
[44] |
Misra N N et al 2014 Innov. Food Sci. Emerg. Technol. 26 456 doi: 10.1016/j.ifset.2014.10.001
|
[45] |
Wu H Y et al 2012 Plasma Process. Polym. 9 417 doi: 10.1002/ppap.201100065
|
[46] |
Ikai H et al 2010 Antimicrob. Agents Chemother 54 5086 doi: 10.1128/AAC.00751-10
|
[47] |
Jacobi H W, Kwakye-Awuah B and Schrems O 2004 Ann. Glaciol. 39 29 doi: 10.3189/172756404781814357
|
[48] |
Iseni S et al 2016 Appl. Phys. Lett. 108 184101 doi: 10.1063/1.4948535
|
[49] |
Ji S H et al 2015 Plasma Process. Polym. 12 1164 doi: 10.1002/ppap.201500021
|
[50] |
Tian Y et al 2015 Plasma Process. Polym. 12 439 doi: 10.1002/ppap.201400082
|
[51] |
Liao L B, Chen W M and Xiao X M 2007 J. Food Eng. 78 1326 doi: 10.1016/j.jfoodeng.2006.01.004
|
[52] |
Zhang Q et al 2013 Appl. Phys. Lett. 102 203701 doi: 10.1063/1.4807133
|
[53] |
Romero-Puertas M C et al 2019 Environ. Exp. Bot. 161 107 doi: 10.1016/j.envexpbot.2018.10.012
|
[54] |
Xu Y Y et al 2016 Food Chem. 197 436 doi: 10.1016/j.foodchem.2015.10.144
|
[55] |
Xu H B et al 2021 Water Res. 188 116513 doi: 10.1016/j.watres.2020.116513
|
[56] |
Zhang Q et al 2012 J. Appl. Phys. 111 123305 doi: 10.1063/1.4730627
|
[57] |
Takaki K et al 2013 J. Phys. Conf. Ser. 418 012140 doi: 10.1088/1742-6596/418/1/012140
|
[58] |
Lukes P et al 2014 Plasma Sources Sci. Technol. 23 015019 doi: 10.1088/0963-0252/23/1/015019
|
[59] |
Liu D X et al 2016 Sci. Rep. 6 23737 doi: 10.1038/srep23737
|
[60] |
Akladious S A and Mohamed H I 2018 Sci. Hortic. 236 244 doi: 10.1016/j.scienta.2018.03.047
|
[61] |
Wang C C et al 2018 Am. J. Potato Res. 95 351 doi: 10.1007/s12230-018-9635-3
|
[1] | Xueren HONG (洪学仁), Desheng ZHANG (张德生), Jiming GAO (高吉明), Rongan TANG (唐荣安), Peng GUO (郭鹏), Jukui XUE (薛具奎). The propagation dynamics and stability of an intense laser beam in a radial power-law plasma channel[J]. Plasma Science and Technology, 2021, 23(12): 125002. DOI: 10.1088/2058-6272/ac2ecf |
[2] | Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295 |
[3] | S PUROHIT, Y SUZUKI, S OHDACHI, S YAMAMOTO. Soft x-ray tomographic reconstruction of Heliotron J plasma for the study of magnetohydrodynamic equilibrium and stability[J]. Plasma Science and Technology, 2019, 21(6): 65102-065102. DOI: 10.1088/2058-6272/ab0846 |
[4] | ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11 |
[5] | P. K. KARMAKAR, B. BORAH. Inertia-Centric Stability Analysis of a Planar Uniform Dust Molecular Cloud with Weak Neutral-Charged Dust Frictional Coupling[J]. Plasma Science and Technology, 2014, 16(5): 433-447. DOI: 10.1088/1009-0630/16/5/01 |
[6] | LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20 |
[7] | CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01 |
[8] | CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12 |
[9] | LIU bo (刘波), YANG JiJun (杨吉军), JIAO Guohua (焦国华), XU KeWei (徐可为). Improvement of Interfacial Adhesion Strength and Thermal Stability of Cu/p-SiC:H/SiOC:H Film Stack by Plasma Treatment on the Surface of Cu Film[J]. Plasma Science and Technology, 2012, 14(7): 619-623. DOI: 10.1088/1009-0630/14/7/12 |
[10] | George SAMUEL, Devi E SAVITHRI, Venugopal CHANDU. Kinetic Alfven Waves Excited by Cometary Newborn Ions with Large Perpendicular Energies[J]. Plasma Science and Technology, 2011, 13(2): 135-139. |