Advanced Search+
Xucheng WANG, Shuhan GAO, Yuantao ZHANG. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium–oxygen admixtures[J]. Plasma Science and Technology, 2022, 24(8): 085401. DOI: 10.1088/2058-6272/ac67bf
Citation: Xucheng WANG, Shuhan GAO, Yuantao ZHANG. Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium–oxygen admixtures[J]. Plasma Science and Technology, 2022, 24(8): 085401. DOI: 10.1088/2058-6272/ac67bf

Numerical study on peak current in pulse-modulated radio-frequency discharges with atmospheric helium–oxygen admixtures

  • Atmospheric pressure pulse-modulated radio-frequency (rf) plasmas have drawn growing attention due to their potential in applications. By selecting appropriate modulation parameters, the diffused and large-volume plasma can be generated in the pulse-modulated rf plasma with plenty of reactive oxygen species, which is essential for the biomedical application of helium–oxygen plasmas. In this paper, by means of a fluid model, the formation of the peak current in the first period (PCFP) in a pulse-modulated rf helium–oxygen discharge driven by a sinusoidal voltage is discussed, the existence of a reverse field near the anode caused by the negative and positive charges contributes greatly to the mechanism of PCFP. In the simulation, as oxygen admixture increases, the negative ions of O- and O2- become dominative anions in the sheath region, which can't be driven to the anode very quickly to build a reverse field, thus the PCFP eventually disappears. This study can effectively enhance the understanding of different transportation behavior of heavy negative ions and electrons, and further optimize pulse-modulated rf discharges with helium–oxygen mixtures in various applications.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return