Citation: | Yuying LI, Jiacheng XU, Chunle ZHANG, Shuiliang YAO, Jing LI, Zuliang WU, Erhao GAO, Jiali ZHU. Investigation of cyclohexane catalytic degradation driven by N atoms from N2 discharges[J]. Plasma Science and Technology, 2023, 25(2): 025502. DOI: 10.1088/2058-6272/ac8a40 |
The effect of N2 discharge products on cyclohexane degradation over a MnO2/γ-Al2O3 catalyst has been evaluated by feeding N2 discharge products to the catalyst using a specially designed dielectric barrier discharge reactor. At a reaction temperature of 100 ℃, the cyclohexane conversion increased from 2.46% (without N2 discharge products) to 26.3% (with N2 discharge products). N- and O-containing by-product (3, 4-dehydroproline) was found on the catalyst surface using gas chromatograph-mass spectrometry identification, in which C=N–C and C=N–H bonds were also confirmed from x-ray photoelectron spectroscopy analysis results. Operando analysis results using diffuse reflectance infrared Fourier transform spectroscopy revealed that N atoms can react with surface H2O possibly to NH and OH reactive species that have reactivities to promote CO oxidation to CO2. The mechanism of N-atom-driven cyclohexane degradation to CO and CO2 is proposed.
This research was supported by National Natural Science Foundation of China (No. 12075037), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX21_2873) and Research and Application Service Platform Project of API Manufacturing Environmental Protection and Safety Technology in China (No. 2020-0107-3-1).
[1] |
Xu W C et al 2016 Catal. Commun.
84 61 doi: 10.1016/j.catcom.2016.06.004
|
[2] |
Zhu X B et al 2016 Appl. Catal. B: Environ.
183 124 doi: 10.1016/j.apcatb.2015.10.013
|
[3] |
Chang Z S, Wang C and Zhang G J 2020 Plasma Process. Polym.
17 190013
|
[4] |
Yu X et al 2022 Chemosphere
298 134274 doi: 10.1016/j.chemosphere.2022.134274
|
[5] |
Xu W C et al 2020 J. Hazard. Mater.
387 122004 doi: 10.1016/j.jhazmat.2019.122004
|
[6] |
Guo H et al 2019 Chem. Eng. J.
372 226 doi: 10.1016/j.cej.2019.04.119
|
[7] |
Wu Z L et al 2022 Chem. Eng. J.
427 130983 doi: 10.1016/j.cej.2021.130983
|
[8] |
Xia T T et al 2022 J. Hazard. Mater.
424 127700 doi: 10.1016/j.jhazmat.2021.127700
|
[9] |
Song H et al 2019 Plasma Chem. Plasma Process.
39 1469 doi: 10.1007/s11090-019-10013-w
|
[10] |
Kim J et al 2020 J. Hazard. Mater.
397 122577 doi: 10.1016/j.jhazmat.2020.122577
|
[11] |
Yao X H et al 2019 Chemosphere
230 479 doi: 10.1016/j.chemosphere.2019.05.075
|
[12] |
Zhu D D et al 2022 J. Environ. Chem. Eng.
10 107493 doi: 10.1016/j.jece.2022.107493
|
[13] |
Liu X et al 2022 J. Phys. D: Appl. Phys.
55 125206 doi: 10.1088/1361-6463/ac4133
|
[14] |
Zhao X L et al 2022 Chem. Eng. Sci.
250 117389 doi: 10.1016/j.ces.2021.117389
|
[15] |
Cheng H et al 2021 J. Phys. D: Appl. Phys.
54 184003 doi: 10.1088/1361-6463/abdf99
|
[16] |
Whitehead J C 2019 Front. Chem. Sci. Eng.
13 264 doi: 10.1007/s11705-019-1794-3
|
[17] |
Cal M P and Schluep M 2001 Environ. Prog.
20 151 doi: 10.1002/ep.670200310
|
[18] |
Chanson R et al 2013 J. Vac. Sci. Technol. A
31 011301 doi: 10.1116/1.4766681
|
[19] |
Chang T et al 2022 Sci. Total Environ.
828 154290 doi: 10.1016/j.scitotenv.2022.154290
|
[20] |
Marchiori L A et al 2019 Environ. Sci. Pollut. Res.
26 4234 doi: 10.1007/s11356-018-2484-2
|
[21] |
Gharbi D, Trigo M M and Recio M 2019 Aerobiologia
35 441 doi: 10.1007/s10453-019-09568-0
|
[22] |
Campos-Ordoñez T et al 2022 Behav. Brain Res.
418 113664 doi: 10.1016/j.bbr.2021.113664
|
[23] |
Armenta-Reséndiza M et al 2019 Toxicol. Appl. Pharmacol.
376 38 doi: 10.1016/j.taap.2019.05.016
|
[24] |
Zheng Y N et al 2020 J. Catal.
405 659 doi: 10.1016/j.jcat.2020.10.001
|
[25] |
Liang L et al 2020 Nano Energy
69 104421 doi: 10.1016/j.nanoen.2019.104421
|
[26] |
Zhang X M et al 2018 ACS Catal.
8 5261 doi: 10.1021/acscatal.7b04287
|
[27] |
Guo L J et al 2018 Front. Environ. Sci. Eng.
12 15 doi: 10.1007/s11783-018-1017-z
|
[28] |
Ma Y C et al 2021 Plasma Sources Sci. Technol.
30 105002 doi: 10.1088/1361-6595/ac2412
|
[29] |
Umemoto H et al 1999 J. Phys. Chem. A
103 700 doi: 10.1021/jp9839605
|
[30] |
Homayoon Z and Bowman J M 2014 J. Phys. Chem. A
118 545 doi: 10.1021/jp410935k
|
[31] |
Yao S L et al 2009 Open Catal. J.
2 79 doi: 10.2174/1876214X00902010079
|
[32] |
Chang J S et al 1989 The Atom and Molecular Processes of Ionized Gas(Tokyo: Tokyo Denki University Press)
|
[33] |
Liu Y D and Sander S P 2015 J. Phys. Chem. A
119 10060 doi: 10.1021/acs.jpca.5b07220
|
[34] |
Caracciolo A et al 2018 J. Phys. Chem. Lett.
9 1229 doi: 10.1021/acs.jpclett.7b03439
|
[1] | Manting LU, Yi HE, Xue LIU, Jiamin HUANG, Jiawei ZHANG, Xiaoping MA, Yu XIN. Enhancing surface adhesion of polytetrafluoroethylene induced by two-step in-situ treatment with radiofrequency capacitively coupled Ar/Ar+CH4+NH3 plasma[J]. Plasma Science and Technology, 2023, 25(10): 105503. DOI: 10.1088/2058-6272/acd528 |
[2] | Yu XU (徐雨), Xiaoqing DONG (董晓庆), Xueyan LI (李雪艳), Meng CHEN, Jing ZHANG (张菁), Qingsong YU. Deposition of stain resistance coating by non-thermal plasma brush application to dental whitening[J]. Plasma Science and Technology, 2019, 21(6): 65501-065501. DOI: 10.1088/2058-6272/ab033a |
[3] | Yang LIU (刘洋), Kaihong FANG (方开洪), Huiyi LV (吕会议), Jiwei LIU (刘际伟), Boyu WANG (王博宇). Hydrogenation of zirconium film by implantation of hydrogen ions[J]. Plasma Science and Technology, 2017, 19(3): 35502-035502. DOI: 10.1088/2058-6272/19/3/035502 |
[4] | ZHOU Nengtao(周能涛), WU Jiefeng(吴杰峰), ZHANG Ping(张平), WANG Xueqin(王学勤), LU Yu(卢禹). A Nickel Coating Removal Process for ITER Superconducting Cables[J]. Plasma Science and Technology, 2014, 16(5): 532-539. DOI: 10.1088/1009-0630/16/5/15 |
[5] | YIN Shiheng (尹诗衡), REN Li (任力), WANG Yingjun (王迎军). Argon Plasma-Induced Graft Polymerization of PEGMA on Chitosan Membrane Surface for Cell Adhesion Improvement[J]. Plasma Science and Technology, 2013, 15(10): 1041-1046. DOI: 10.1088/1009-0630/15/10/15 |
[6] | Krishnasamy NAVANEETHA PANDIYARAJ, Vengatasamy SELVARAJAN, Rajendrasing R. DESHMUKH, Coimbatore. Paramasivam, et al. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties[J]. Plasma Science and Technology, 2013, 15(1): 56-63. DOI: 10.1088/1009-0630/15/1/10 |
[7] | WU Wangping (吴王平), CHEN Zhaofeng (陈照峰), LIU Yong (刘勇). Iridium Coating Deposited By Using the Double Glow Plasma Technique ----Effect of Glow Plasma on Structure of Coating at Single Substrate Edge[J]. Plasma Science and Technology, 2012, 14(10): 909-914. DOI: 10.1088/1009-0630/14/10/10 |
[8] | ZHU Dahuan(朱大焕), LIU Yang(刘洋), CHEN Junling(陈俊凌), YAN Rong(鄢容). Thermo-Mechanical Calculation of Vacuum Plasma Spraying Tungsten Coating Applied as the Plasma Facing Material for EAST[J]. Plasma Science and Technology, 2012, 14(9): 794-798. DOI: 10.1088/1009-0630/14/9/04 |
[9] | ZHU Dahuan (朱大焕), WANG Kun (王坤), WANG Xianping (王先平), CHEN Junling (陈俊凌), FANG Qianfeng (方前锋). Analysis of residual thermal stress in CVD-W coating as plasma facing material[J]. Plasma Science and Technology, 2012, 14(7): 656-660. DOI: 10.1088/1009-0630/14/7/20 |
[10] | LIU bo (刘波), YANG JiJun (杨吉军), JIAO Guohua (焦国华), XU KeWei (徐可为). Improvement of Interfacial Adhesion Strength and Thermal Stability of Cu/p-SiC:H/SiOC:H Film Stack by Plasma Treatment on the Surface of Cu Film[J]. Plasma Science and Technology, 2012, 14(7): 619-623. DOI: 10.1088/1009-0630/14/7/12 |