Citation: | Zhangcan YANG, Junyi FAN. Modeling tungsten response under helium plasma irradiation: a review[J]. Plasma Science and Technology, 2022, 24(12): 124006. DOI: 10.1088/2058-6272/ac9f8f |
Tungsten, a leading candidate for plasma-facing materials (PFM) in future fusion devices, will be exposed to high-flux low-energy helium plasma under the anticipated fusion operation conditions. In the past two decades, experiments have revealed that exposure to helium plasma strongly modifies the surface morphology and hence the sputtering, thermal and other properties of tungsten, posing a serious danger to the performance and lifetime of tungsten and the steady-state operation of plasma. In this article, we provide a review of modeling and simulation efforts on the long-term evolution of helium bubbles, surface morphology, and property changes of tungsten exposed to low-energy helium plasma. The current gap and outstanding challenges to establish a predictive modeling capability for dynamic evolution of PFM are discussed.
This work was supported by National Natural Science Foundation of China (No. 11905071) and the National MCF Energy R&D Program (No. 2018YFE0308103).
[1] |
Ye M Y 2005 Plasma Sci. Technol. 7 2828 doi: 10.1088/1009-0630/7/3/010
|
[2] |
Pintsuk G 2012 Tungsten as a plasma-facing material ed R J M Konings Comprehensive Nuclear Materials (Amsterdam: Elsevier) 551
|
[3] |
Ueda Y et al 2014 Fusion Eng. Des. 89 901 doi: 10.1016/j.fusengdes.2014.02.078
|
[4] |
Hammond K D 2017 Mater. Res. Express 4 104002 doi: 10.1088/2053-1591/aa8c22
|
[5] |
Marian J et al 2017 Nucl. Fusion 57 092008 doi: 10.1088/1741-4326/aa5e8d
|
[6] |
Rieth M et al 2019 J. Nucl. Mater. 519 334 doi: 10.1016/j.jnucmat.2019.03.035
|
[7] |
De Temmerman G, Hirai T and Pitts R A 2018 Plasma Phys. Control. Fusion 60 044018 doi: 10.1088/1361-6587/aaaf62
|
[8] |
Li Y G et al 2020 Tungsten 2 34 doi: 10.1007/s42864-020-00042-w
|
[9] |
Meyer F W et al 2014 J. Phys. Conf. Ser. 488 012036 doi: 10.1088/1742-6596/488/1/012036
|
[10] |
Meyer F W et al 2014 Phys. Scr. 2014 014029 doi: 10.1088/0031-8949/2014/T159/014029
|
[11] |
Wang K et al 2017 Sci. Rep. 7 42315 doi: 10.1038/srep42315
|
[12] |
Bernard E et al 2015 J. Nucl. Mater. 463 316 doi: 10.1016/j.jnucmat.2014.11.041
|
[13] |
Miyamoto M et al 2015 J. Nucl. Mater. 463 333 doi: 10.1016/j.jnucmat.2014.10.098
|
[14] |
Liu F S et al 2014 Fusion Eng. Des. 89 2516 doi: 10.1016/j.fusengdes.2014.05.023
|
[15] |
Garrison L M and Kulcinski G L 2015 J. Nucl. Mater. 466 302 doi: 10.1016/j.jnucmat.2015.07.025
|
[16] |
Thompson M et al 2018 Nucl. Fusion 58 066010 doi: 10.1088/1741-4326/aab96c
|
[17] |
Wang S W et al 2020 J. Nucl. Mater. 532 152051 doi: 10.1016/j.jnucmat.2020.152051
|
[18] |
Wu X B et al 2014 J. Nucl. Mater. 455 151 doi: 10.1016/j.jnucmat.2014.05.060
|
[19] |
Zhao Q et al 2019 Comput. Mater. Sci. 162 133 doi: 10.1016/j.commatsci.2019.03.002
|
[20] |
Yue F Y et al 2021 J. Nucl. Mater. 543 152545 doi: 10.1016/j.jnucmat.2020.152545
|
[21] |
Parish C M et al 2014 Acta Mater. 62 173 doi: 10.1016/j.actamat.2013.09.045
|
[22] |
El-Atwani O et al 2012 J. Nucl. Mater. 434 170 doi: 10.1016/j.jnucmat.2012.11.012
|
[23] |
El-Atwani O et al 2014 Nucl. Fusion 54 083013 doi: 10.1088/0029-5515/54/8/083013
|
[24] |
Chen Z et al 2018 Acta Mater. 147 100 doi: 10.1016/j.actamat.2018.01.015
|
[25] |
El-Atwani O et al 2020 J. Nucl. Mater. 538 152150 doi: 10.1016/j.jnucmat.2020.152150
|
[26] |
Baldwin M J et al 2009 J. Nucl. Mater. 390–391 886 doi: 10.1016/j.jnucmat.2009.01.247
|
[27] |
Baldwin M J et al 2011 Nucl. Fusion 51 103021 doi: 10.1088/0029-5515/51/10/103021
|
[28] |
De Temmerman G et al 2013 J. Nucl. Mater. 438 S78 doi: 10.1016/j.jnucmat.2013.01.012
|
[29] |
Baldwin M J and Doerner R P 2008 Nucl. Fusion 48 035001 doi: 10.1088/0029-5515/48/3/035001
|
[30] |
Takamura S et al 2006 Plasma Fusion Res. 1 051 doi: 10.1585/pfr.1.051
|
[31] |
Wright G M et al 2012 Nucl. Fusion 52 042003 doi: 10.1088/0029-5515/52/4/042003
|
[32] |
Fan H Y et al 2015 Plasma Sci. Technol. 17 331 doi: 10.1088/1009-0630/17/4/13
|
[33] |
Kajita S et al 2009 Nucl. Fusion 49 095005 doi: 10.1088/0029-5515/49/9/095005
|
[34] |
Baldwin M J and Doerner R P 2010 J. Nucl. Mater. 404 165 doi: 10.1016/j.jnucmat.2010.06.034
|
[35] |
Petty T J et al 2015 Nucl. Fusion 55 093033 doi: 10.1088/0029-5515/55/9/093033
|
[36] |
Nishijima D et al 2004 J. Nucl. Mater. 329–333 1029 doi: 10.1016/j.jnucmat.2004.04.129
|
[37] |
Fan H Y et al 2021 Plasma Sci. Technol. 24 015601 doi: 10.1088/2058-6272/ac35a2
|
[38] |
Miyamoto M et al 2011 J. Nucl. Mater. 415 S657 doi: 10.1016/j.jnucmat.2011.01.008
|
[39] |
Qu S L et al 2018 Fusion Eng. Des. 137 97 doi: 10.1016/j.fusengdes.2018.08.014
|
[40] |
Kajita S et al 2016 Results Phys. 6 877 doi: 10.1016/j.rinp.2016.10.025
|
[41] |
Kajita S et al 2016 Jpn. J. Appl. Phys. 55 056203 doi: 10.7567/JJAP.55.056203
|
[42] |
Qu S L et al 2017 J. Nucl. Mater. 484 382 doi: 10.1016/j.jnucmat.2016.11.029
|
[43] |
Kajita S, Takamura S and Ohno N 2009 Nucl. Fusion 49 032002 doi: 10.1088/0029-5515/49/3/032002
|
[44] |
Nishijima D et al 2013 J. Nucl. Mater. 434 230 doi: 10.1016/j.jnucmat.2012.10.042
|
[45] |
Kajita S 2014 Nucl. Fusion 54 033005 doi: 10.1088/0029-5515/54/3/033005
|
[46] |
Sinclair G, Tripathi J K and Hassanein A 2018 J. Appl. Phys. 123 133302 doi: 10.1063/1.5023665
|
[47] |
Takanori M, Shuichi T and Hiroaki K 2013 Plasma Sci. Technol. 15 161 doi: 10.1088/1009-0630/15/2/17
|
[48] |
Tokitani M et al 2011 Nucl. Fusion 51 102001 doi: 10.1088/0029-5515/51/10/102001
|
[49] |
Rudakov D L et al 2016 Phys. Scr. 2016 014055 doi: 10.1088/0031-8949/T167/1/014055
|
[50] |
Nishijima D et al 2011 J. Nucl. Mater. 415 S96 doi: 10.1016/j.jnucmat.2010.12.017
|
[51] |
Wirth B D et al 2015 J. Nucl. Mater. 463 30 doi: 10.1016/j.jnucmat.2014.11.072
|
[52] |
Sandoval L et al 2019 Materials 12 2500 doi: 10.3390/ma12162500
|
[53] |
Ziegler J F, Ziegler M D and Biersack J P 2010 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 268 1818 doi: 10.1016/j.nimb.2010.02.091
|
[54] |
Henriksson K O E, Nordlund K and Keinonen J 2006 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 244 377 doi: 10.1016/j.nimb.2005.10.020
|
[55] |
Pentecoste L et al 2016 J. Nucl. Mater. 470 44 doi: 10.1016/j.jnucmat.2015.12.017
|
[56] |
Hammond K D and Wirth B D 2014 J. Appl. Phys. 116 143301 doi: 10.1063/1.4897419
|
[57] |
Hammond K D et al 2018 Acta Mater. 144 561 doi: 10.1016/j.actamat.2017.09.061
|
[58] |
Yang Z C et al 2017 Fusion Sci. Technol. 71 60 doi: 10.13182/FST16-111
|
[59] |
Faney T and Wirth B D 2014 Modelling Simul. Mater. Sci. Eng. 22 065010 doi: 10.1088/0965-0393/22/6/065010
|
[60] |
Cekmer O et al 2018 Int. J. Uncertainty Quantif. 8 429 doi: 10.1615/Int.J.UncertaintyQuantification.2018025120
|
[61] |
Cusentino M A, Wood M A and Thompson A P 2020 Nucl. Fusion 60 126018 doi: 10.1088/1741-4326/abb148
|
[62] |
Becquart C S and Domain C 2006 Phys. Rev. Lett. 97 196402 doi: 10.1103/PhysRevLett.97.196402
|
[63] |
Wang J et al 2012 J. Nucl. Mater. 427 290 doi: 10.1016/j.jnucmat.2012.05.020
|
[64] |
Perez D, Vogel T and Uberuaga B P 2014 Phys. Rev. B 90 014102 doi: 10.1103/PhysRevB.90.014102
|
[65] |
Shu X L et al 2013 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 303 84 doi: 10.1016/j.nimb.2012.10.028
|
[66] |
Boisse J, Domain C and Becquart C S 2014 J. Nucl. Mater. 455 10 doi: 10.1016/j.jnucmat.2014.02.031
|
[67] |
Li X C 2014 J. Nucl. Mater. 451 356 doi: 10.1016/j.jnucmat.2014.04.022
|
[68] |
Becquart C S and Domain C 2009 J. Nucl. Mater. 385 223 doi: 10.1016/j.jnucmat.2008.11.027
|
[69] |
Wu X B et al 2013 Nucl. Fusion 53 073049 doi: 10.1088/0029-5515/53/7/073049
|
[70] |
Hammond K D et al 2015 Europhys. Lett. 110 52002 doi: 10.1209/0295-5075/110/52002
|
[71] |
Wang J L et al 2015 Nucl. Fusion 55 092003 doi: 10.1088/0029-5515/55/9/092003
|
[72] |
Yang Z C and Hammond K D 2018 J. Phys. Condens. Matter 30 325002 doi: 10.1088/1361-648X/aad0bc
|
[73] |
Kobayashi R et al 2015 J. Nucl. Mater. 463 1071 doi: 10.1016/j.jnucmat.2014.12.049
|
[74] |
Hammond K D et al 2019 Nucl. Fusion 59 066035 doi: 10.1088/1741-4326/ab12f6
|
[75] |
Hu L et al 2014 Surf. Sci. 626 L21 doi: 10.1016/j.susc.2014.03.020
|
[76] |
Hu L et al 2014 J. Appl. Phys. 115 173512 doi: 10.1063/1.4874675
|
[77] |
Hu L et al 2015 J. Appl. Phys. 118 163301 doi: 10.1063/1.4933393
|
[78] |
Maroudas D et al 2016 J. Phys. Condens. Matter 28 064004 doi: 10.1088/0953-8984/28/6/064004
|
[79] |
Perez D et al 2016 J. Appl. Phys. 119 203301 doi: 10.1063/1.4951706
|
[80] |
Wang X X, Niu L L and Wang S Q 2017 J. Nucl. Mater. 487 158 doi: 10.1016/j.jnucmat.2017.02.010
|
[81] |
Sandoval L et al 2018 Acta Mater. 159 46 doi: 10.1016/j.actamat.2018.07.075
|
[82] |
Xie H X et al 2017 Acta Mater. 141 10 doi: 10.1016/j.actamat.2017.09.005
|
[83] |
Smirnov R D, Krasheninnikov S I and Guterl J 2015 J. Nucl. Mater. 463 359 doi: 10.1016/j.jnucmat.2014.10.033
|
[84] |
Zhan J et al 2021 Comput. Mater. Sci. 187 110076 doi: 10.1016/j.commatsci.2020.110076
|
[85] |
Xu Y and Yang Z C 2022 At. Energy Sci. Technol. 56 168 (in Chinese) doi: 10.4031/MTSJ.56.4.17
|
[86] |
Faney T, Krasheninnikov S I and Wirth B D 2015 Nucl. Fusion 55 013014 doi: 10.1088/0029-5515/55/1/013014
|
[87] |
Domain C and Becquart C S 2018 Object Kinetic Monte Carlo (OKMC): a coarse-grained approach to radiation damage Handbook of Materials Modeling: Methods: Theory and Modeling ed W Andreoni and S Yip (Berlin: Springer) 1287
|
[88] |
Becquart C S et al 2010 J. Nucl. Mater. 403 75 doi: 10.1016/j.jnucmat.2010.06.003
|
[89] |
Nandipati G et al 2022 J. Phys. Condens. Matter 34 035701 doi: 10.1088/1361-648X/ac2ca7
|
[90] |
Ma F F et al 2021 Nucl. Fusion 61 106017 doi: 10.1088/1741-4326/ac2080
|
[91] |
Hou P W et al 2021 Chin. Phys. B 30 086108 doi: 10.1088/1674-1056/abf7ac
|
[92] |
Hou J et al 2016 Comput. Mater. Sci. 123 148 doi: 10.1016/j.commatsci.2016.06.024
|
[93] |
Golubov S I, Barashev A V and Stoller R E 2020 Reaction rate theory ed R J M Konings and R E Stoller Comprehensive Nuclear Materials 2nd edn (Amsterdam: Elsevier) 717
|
[94] |
Kohnert A A, Wirth B D and Capolungo L 2018 Comput. Mater. Sci. 149 442 doi: 10.1016/j.commatsci.2018.02.049
|
[95] |
Watanabe Y et al 2007 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 255 32 doi: 10.1016/j.nimb.2006.11.008
|
[96] |
Xu Q, Yoshida N and Yoshiie T 2007 J. Nucl. Mater. 367–370 806 doi: 10.1016/j.jnucmat.2007.03.078
|
[97] |
Li Y G et al 2012 Commun. Comput. Phys. 11 1547 doi: 10.4208/cicp.030311.090611a
|
[98] |
Li Y G et al 2012 J. Nucl. Mater. 431 26 doi: 10.1016/j.jnucmat.2011.12.015
|
[99] |
Zhao Z et al 2017 Nucl. Fusion 57 086020 doi: 10.1088/1741-4326/aa7640
|
[100] |
Krasheninnikov S I, Faney T and Wirth B D 2014 Nucl. Fusion 54 073019 doi: 10.1088/0029-5515/54/7/073019
|
[101] |
Krasheninnikov S I and Smirnov R D 2015 Nucl. Fusion 55 073005 doi: 10.1088/0029-5515/55/7/073005
|
[102] |
Krasheninnikov S I and Smirnov R D 2016 Phys. Scr. 2016 014021 doi: 10.1088/0031-8949/T167/1/014021
|
[103] |
Blondel S et al 2017 Fusion Sci. Technol. 71 84 doi: 10.13182/FST16-109
|
[104] |
Blondel S et al 2017 Fusion Sci. Technol. 71 22 doi: 10.13182/FST16-112
|
[105] |
Blondel S et al 2018 Nucl. Fusion 58 126034 doi: 10.1088/1741-4326/aae8ef
|
[106] |
Woller K B, Whyte D G and Wright G M 2015 J. Nucl. Mater. 463 289 doi: 10.1016/j.jnucmat.2014.11.126
|
[107] |
Perez D et al 2017 Sci. Rep. 7 2522 doi: 10.1038/s41598-017-02428-2
|
[108] |
Sandoval L et al 2015 Phys. Rev. Lett. 114 105502 doi: 10.1103/PhysRevLett.114.105502
|
[109] |
Chernatynskiy A, Phillpot S R and LeSar R 2013 Annu. Rev. Mater. Res. 43 157 doi: 10.1146/annurev-matsci-071312-121708
|
[110] |
Wang Y and McDowell D L 2020 Uncertainty quantification in materials modeling ed Y Wang and D L McDowell Uncertainty Quantification in Multiscale Materials Modeling (Cambridge, MA: Woodhead Publishing) 1
|
[111] |
Saltelli A et al 2007 Global Sensitivity Analysis. The Primer (Chichester: Wiley)
|
[112] |
Looss B and Lemaître P 2015 A review on global sensitivity analysis methods ed G Dellino and C Meloni Uncertainty Management in Simulation-Optimization of Complex Systems: Algorithms and Applications (Boston, MA: Springer) 101
|
[113] |
Ye M and Hill M C 2017 Global sensitivity analysis for uncertain parameters, models, and scenarios ed G P Petropoulos and P K Srivastava Sensitivity Analysis in Earth Observation Modelling (Amsterdam: Elsevier) 177
|
[114] |
Sefta F et al 2013 Nucl. Fusion 53 073015 doi: 10.1088/0029-5515/53/7/073015
|
[115] |
Hammond K D et al 2020 Nucl. Fusion 60 129401 doi: 10.1088/1741-4326/abb2d3
|
[116] |
Lasa A, Tähtinen S K and Nordlund K 2014 Europhys. Lett. 105 25002 doi: 10.1209/0295-5075/105/25002
|
[117] |
Ito A M et al 2015 Nucl. Fusion 55 073013 doi: 10.1088/0029-5515/55/7/073013
|
[118] |
Valles G et al 2017 J. Nucl. Mater. 490 108 doi: 10.1016/j.jnucmat.2017.04.021
|
[119] |
Shi Q, Dai S Y and Wang D Z 2018 Fusion Eng. Des. 136 554 doi: 10.1016/j.fusengdes.2018.03.019
|
[120] |
Dasgupta D et al 2019 Nucl. Fusion 59 086057 doi: 10.1088/1741-4326/ab22cb
|
[121] |
Dasgupta D, Maroudas D and Wirth B D 2020 Surf. Sci. 698 121614 doi: 10.1016/j.susc.2020.121614
|
[122] |
Chen C S et al 2021 Nucl. Fusion 61 016016 doi: 10.1088/1741-4326/abbf64
|
[123] |
Chen C S et al 2021 J. Appl. Phys. 129 193302 doi: 10.1063/5.0050195
|
[124] |
Chen C S et al 2021 Phys. Rev. Mater. 5 113403 doi: 10.1103/PhysRevMaterials.5.113403
|
[125] |
Wright J A R 2022 Tungsten 4 184 doi: 10.1007/s42864-021-00133-2
|
[126] |
Krasheninnikov S I 2011 Phys. Scr. 2011 014040 doi: 10.1088/0031-8949/2011/T145/014040
|
[127] |
Trufanov D, Marenkov E and Krasheninnikov S 2015 Phys. Procedia 71 20 doi: 10.1016/j.phpro.2015.08.377
|
[128] |
Martynenko Y V and Nagel M Y 2012 Plasma Phys. Rep. 38 996 doi: 10.1134/S1063780X12110074
|
[129] |
Cusentino M A and Wirth B D 2020 Comput. Mater. Sci. 183 109875 doi: 10.1016/j.commatsci.2020.109875
|
[130] |
Klaver T P C et al 2016 Nucl. Fusion 56 126015 doi: 10.1088/0029-5515/56/12/126015
|
[131] |
Klaver T P C, Zhang S and Nordlund K 2017 J. Nucl. Mater. 492 113 doi: 10.1016/j.jnucmat.2017.05.023
|
[132] |
Yang Z C et al 2019 Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 455 118 doi: 10.1016/j.nimb.2019.06.021
|
[133] |
Schmid K et al 2015 Nucl. Fusion 55 053015 doi: 10.1088/0029-5515/55/5/053015
|
[134] |
Kajita S et al 2018 Sci. Rep. 8 56 doi: 10.1038/s41598-017-18476-7
|
[135] |
Kajita S et al 2018 Nucl. Fusion 58 106002 doi: 10.1088/1741-4326/aad24e
|
[136] |
Kajita S, Yoshida N and Ohno N 2020 Nucl. Mater. Energy 25 100828 doi: 10.1016/j.nme.2020.100828
|
[137] |
McCarthy P et al 2020 Nucl. Fusion 60 026012 doi: 10.1088/1741-4326/ab6060
|
[138] |
Woller K B, Whyte D G and Wright G M 2017 Nucl. Mater. Energy 12 1282 doi: 10.1016/j.nme.2017.04.016
|
[139] |
Hwangbo D et al 2018 Nucl. Fusion 58 096022 doi: 10.1088/1741-4326/aacd1f
|
[140] |
Lasa A et al 2020 Phys. Scr. 2020 014041 doi: 10.1088/1402-4896/ab4c29
|
[141] |
Lasa A et al 2021 Nucl. Fusion 61 116051 doi: 10.1088/1741-4326/ac2875
|
[142] |
Sefta F et al 2013 J. Nucl. Mater. 438 S493 doi: 10.1016/j.jnucmat.2013.01.101
|
[143] |
Ferroni F, Hammond K D and Wirth B D 2015 J. Nucl. Mater. 458 419 doi: 10.1016/j.jnucmat.2014.12.090
|
[144] |
Li Y G et al 2017 Nucl. Fusion 57 016038 doi: 10.1088/1741-4326/57/1/016038
|
[145] |
von Toussaint U, Mutzke A and Manhard A 2017 Phys. Scr. 2017 014056 doi: 10.1088/1402-4896/aa90be
|
[146] |
Stadlmayr R et al 2020 J. Nucl. Mater. 532 152019 doi: 10.1016/j.jnucmat.2020.152019
|
[147] |
Liu D H et al 2022 Nucl. Mater. Energy 31 101205 doi: 10.1016/j.nme.2022.101205
|
[148] |
Hofsäss H, Zhang K and Mutzke A 2014 Appl. Surf. Sci. 310 134 doi: 10.1016/j.apsusc.2014.03.152
|
[149] |
Nietiadi M L and Urbassek H M 2013 Appl. Phys. Lett. 103 113108 doi: 10.1063/1.4821294
|
[150] |
Bradley R M and Hofsäss H 2014 J. Appl. Phys. 116 234304 doi: 10.1063/1.4904438
|
[151] |
Chen Y N, Ma J L and Li W 2019 Phys. Rev. B 99 020305(R) doi: 10.1103/PhysRevB.99.020305
|
[152] |
Wang Y Y and Zhao J J 2022 Int. J. Heat Mass Transfer 193 122965 doi: 10.1016/j.ijheatmasstransfer.2022.122965
|
[153] |
Hu L, Wirth B D and Maroudas D 2017 Appl. Phys. Lett. 111 081902 doi: 10.1063/1.4986956
|
[154] |
Ding Y M et al 2021 Fusion Eng. Des. 168 112682 doi: 10.1016/j.fusengdes.2021.112682
|
[155] |
Hu Y, Li S H and Bao H 2021 Phys. Rev. B 103 104301 doi: 10.1103/PhysRevB.103.104301
|
[156] |
Loeb A L 1954 J. Am. Ceram. Soc. 37 96 doi: 10.1111/j.1551-2916.1954.tb20107.x
|
[157] |
Smith D S et al 2013 J. Mater. Res. 28 2260 doi: 10.1557/jmr.2013.179
|
[1] | Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841 |
[2] | LU Xiaofei (陆小飞), FU Peng (傅鹏), ZHUANG Ming (庄明), QIU Lilong (邱立龙), HU Liangbing (胡良兵). Process Modeling and Dynamic Simulation for EAST Helium Refrigerator[J]. Plasma Science and Technology, 2016, 18(6): 693-698. DOI: 10.1088/1009-0630/18/6/18 |
[3] | WU Ding (吴鼎), LIU Ping (刘平), SUN Liying (孙立影), HAI Ran (海然), DING Hongbin (丁洪斌). Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air[J]. Plasma Science and Technology, 2016, 18(4): 364-369. DOI: 10.1088/1009-0630/18/4/06 |
[4] | WANG Lijun(王立军), HUANG Xiaolong(黄小龙), JIA Shenli(贾申利), ZHOU Xin(周鑫), SHI Zongqian(史宗谦). Modeling and Simulation of Deflected Anode Erosion in Vacuum Arcs[J]. Plasma Science and Technology, 2014, 16(3): 226-231. DOI: 10.1088/1009-0630/16/3/10 |
[5] | ZHU Dahuan (朱大焕), LIU Yang (刘洋), CHEN Junling (陈俊凌), ZHOU Zhangjian (周张健), YAN Rong (鄢容). Surface Cracking Behaviors of Ultra-Fine Grained Tungsten Under Edge Plasma Loading in the HT-7 Tokamak[J]. Plasma Science and Technology, 2013, 15(6): 605-608. DOI: 10.1088/1009-0630/15/6/21 |
[6] | Swagat S. RATH, Archana PANY, K. JAYASANKAR, Ajit K. MITRA, C. SATISH KUMAR, Partha S. MUKHERJEE, Barada K. MISHRA. Statistical Modeling Studies of Iron Recovery from Red Mud Using Thermal Plasma[J]. Plasma Science and Technology, 2013, 15(5): 459-464. DOI: 10.1088/1009-0630/15/5/13 |
[7] | Miyuki YAJIMA, Masato YAMAGIWA, Shin KAJITA, Noriyasu OHNO, Masayuki TOKITANI, Arimichi TAKAYAM, Seiki SAITO, Atsushi M. ITO, Hiroaki NAKAMURA, Naoaki YOSHIDA. Comparison of Damages on Tungsten Surface Exposed to Noble Gas Plasmas[J]. Plasma Science and Technology, 2013, 15(3): 282-286. DOI: 10.1088/1009-0630/15/3/18 |
[8] | Takanori MIYAMOTO, Shuichi TAKAMURA, Hiroaki KURISHITA. Recovery of Tungsten Surface with Fiber-Form Nanostructure by Plasmas Exposures[J]. Plasma Science and Technology, 2013, 15(2): 161-165. DOI: 10.1088/1009-0630/15/2/17 |
[9] | Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02 |
[10] | LI Yonggang (李永钢), ZHOU Wanghuai (周望怀), HUANG Liangfeng (黄良锋), NING Ronghui (宁荣辉), ZENG Zhi (曾雉)#, JU Xin (巨新). The Accumulation of He on a W Surface During keV-He Irradiation: Cluster Dynamics Modeling[J]. Plasma Science and Technology, 2012, 14(7): 624-628. DOI: 10.1088/1009-0630/14/7/13 |
1. | Du, M.Q., Ding, Z.F., Qi, L.W. et al. Effects of impedance matching network on α-γ mode transition in atmospheric pressure RF discharges. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(8): 086001. DOI:10.35848/1347-4065/ad606e | |
2. | Zhang, Z.-H., Zhong, K.-X., Liu, Y. et al. Fluid simulation of atmospheric argon RF dielectric barrier discharges: Role of neutral gas temperature. Physics of Plasmas, 2024, 31(5): 053515. DOI:10.1063/5.0202078 | |
3. | Wang, K., Li, J., Wang, S. et al. Atmospheric Capillary Plasma Electrode Discharge Based on Porous Anodic Alumina | [基于多孔阳极氧化铝的大气压毛细管等离子体电极放电研究]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2023, 43(10): 863-869. DOI:10.13922/j.cnki.cjvst.202306011 | |
4. | Wang, L., Lazarou, C., Anastassiou, C. et al. Investigation of an atmospheric pressure radio frequency helium planar plasma source in humid ambient air. Plasma Sources Science and Technology, 2021, 30(7): 075029. DOI:10.1088/1361-6595/ac12c0 |