Citation: | Weikang TANG, Qibin LUAN, Hongen SUN, Lai WEI, Shuangshuang LU, Shuai JIANG, Jian XU, Zhengxiong WANG. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model[J]. Plasma Science and Technology, 2023, 25(4): 045103. DOI: 10.1088/2058-6272/aca372 |
Numerical simulation on the resonant magnetic perturbation penetration is carried out by the newly-updated initial value code MDC (MHD@Dalian Code). Based on a set of two-fluid four-field equations, the bootstrap current, parallel, and perpendicular transport effects are included appropriately. Taking into account the bootstrap current, a mode penetration-like phenomenon is found, which is essentially different from the classical tearing mode model. To reveal the influence of the plasma flow on the mode penetration process, E × B drift flow and diamagnetic drift flow are separately applied to compare their effects. Numerical results show that a sufficiently large diamagnetic drift flow can drive a strong stabilizing effect on the neoclassical tearing mode. Furthermore, an oscillation phenomenon of island width is discovered. By analyzing it in depth, it is found that this oscillation phenomenon is due to the negative feedback regulation of pressure on the magnetic island. This physical mechanism is verified again by key parameter scanning.
We acknowledge the Super Computer Center of Dalian University of Technology for providing computer resources. This work is supported by the National Key R & D Program of China (No. 2022YFE03040001), National Natural Science Foundation of China (Nos. 11925501 and 12075048), Chinese Academy of Sciences, Key Laboratory of Geospace Environment, University of Science & Technology of China (No. GE2019-01) and Fundamental Research Funds for the Central Universities (No. DUT21GJ204).
[1] |
Furth H P, Killeen J and Rosenbluth M N 1963 Phys. Fluids 6 459 doi: 10.1063/1.1706761
|
[2] |
Rutherford P H 1973 Phys. Fluids 16 1903 doi: 10.1063/1.1694232
|
[3] |
Carrera R, Hazeltine R D and Kotschenreuther M 1986 Phys. Fluids 29 899 doi: 10.1063/1.865682
|
[4] |
Bardóczi L et al 2017 Phys. Plasmas 24 056106 doi: 10.1063/1.4977533
|
[5] |
Wang Z X, Wei L and Yu F 2015 Nucl. Fusion 55 043005 doi: 10.1088/0029-5515/55/4/043005
|
[6] |
Zhang W et al 2019 Plasma Phys. Control. Fusion 61 075002 doi: 10.1088/1361-6587/ab16ae
|
[7] |
La Haye R J 2006 Phys. Plasmas 13 055501 doi: 10.1063/1.2180747
|
[8] |
Sauter O et al 2010 Plasma Phys. Control. Fusion 52 025002 doi: 10.1088/0741-3335/52/2/025002
|
[9] |
Maraschek M 2012 Nucl. Fusion 52 074007 doi: 10.1088/0029-5515/52/7/074007
|
[10] |
Hender T et al 1992 Nucl. Fusion 32 2091 doi: 10.1088/0029-5515/32/12/I02
|
[11] |
Yu Q, Günter S and Finken K H 2009 Phys. Plasmas 16 042301 doi: 10.1063/1.3100236
|
[12] |
Buttery R et al 1999 Nucl. Fusion 39 1827 doi: 10.1088/0029-5515/39/11Y/323
|
[13] |
Lanctot M et al 2016 Nucl. Fusion 56 076003 doi: 10.1088/0029-5515/56/7/076003
|
[14] |
Lu S S et al 2020 Plasma Phys. Control. Fusion 62 125005 doi: 10.1088/1361-6587/abbcc4
|
[15] |
Logan N et al 2021 Nucl. Fusion 61 076010 doi: 10.1088/1741-4326/abff05
|
[16] |
Wang Z X, Tang W K and Wei L 2022 Plasma Sci. Technol.
24 033001 doi: 10.1088/2058-6272/ac4692
|
[17] |
Nave M and Wesson J 1990 Nucl. Fusion 30 2575 doi: 10.1088/0029-5515/30/12/011
|
[18] |
Wang H H et al 2015 Plasma Sci. Technol.
17 539 doi: 10.1088/1009-0630/17/7/03
|
[19] |
Wolf R et al 2005 Nucl. Fusion 45 1700 doi: 10.1088/0029-5515/45/12/026
|
[20] |
Choi W et al 2018 Nucl. Fusion 58 036002 doi: 10.1088/1741-4326/aaa2a9
|
[21] |
Tang W K et al 2020 Nucl. Fusion 60 026015 doi: 10.1088/1741-4326/ab61d5
|
[22] |
Nelson A O et al 2020 Plasma Phys. Control. Fusion 62 094002 doi: 10.1088/1361-6587/ab9b3b
|
[23] |
Fitzpatrick R 1993 Nucl. Fusion 33 1049 doi: 10.1088/0029-5515/33/7/I08
|
[24] |
Yu Q and Günter S 2008 Nucl. Fusion 48 065004 doi: 10.1088/0029-5515/48/6/065004
|
[25] |
Buttery R et al 2000 Nucl. Fusion 40 807 doi: 10.1088/0029-5515/40/4/306
|
[26] |
Haye R L, Hyatt A and Scoville J 1992 Nucl. Fusion 32 2119 doi: 10.1088/0029-5515/32/12/I03
|
[27] |
Wang N C et al 2014 Nucl. Fusion 54 064014 doi: 10.1088/0029-5515/54/6/064014
|
[28] |
Wang H H et al 2018 Nucl. Fusion 58 056024 doi: 10.1088/1741-4326/aab5c0
|
[29] |
Cole A J, Hegna C C and Callen J D 2007 Phys. Rev. Lett.
99 065001 doi: 10.1103/PhysRevLett.99.065001
|
[30] |
Wang J L, Wang Z X and Wei L 2015 Phys. Plasmas 22 092122 doi: 10.1063/1.4931067
|
[31] |
Beidler M T et al 2018 Phys. Plasmas 25 082507 doi: 10.1063/1.5046076
|
[32] |
Zhang H W et al 2021 Plasma Phys. Control. Fusion 63 035011 doi: 10.1088/1361-6587/abd304
|
[33] |
Becoulet M et al 2012 Nucl. Fusion 52 054003 doi: 10.1088/0029-5515/52/5/054003
|
[34] |
Yu Q, Günter S and Lackner K 2018 Nucl. Fusion 58 054003 doi: 10.1088/1741-4326/aab2fb
|
[35] |
Fitzpatrick R 2018 Phys. Plasmas 25 082513 doi: 10.1063/1.5043203
|
[36] |
Fitzpatrick R 2018 Phys. Plasmas 25 112505 doi: 10.1063/1.5043203
|
[37] |
Hu Q M et al 2020 Nucl. Fusion 60 076006 doi: 10.1088/1741-4326/ab8b79
|
[38] |
De Bock M F M et al 2008 Nucl. Fusion 48 015007 doi: 10.1088/0029-5515/48/1/015007
|
[39] |
Yu Q, Günter S and Lackner K 2021 Nucl. Fusion 61 036040 doi: 10.1088/1741-4326/abd197
|
[40] |
Wei L et al 2016 Nucl. Fusion 56 106015 doi: 10.1088/0029-5515/56/10/106015
|
[41] |
Wang J L et al 2017 Nucl. Fusion 57 046007 doi: 10.1088/1741-4326/aa598c
|
[42] |
Liu T et al 2018 Nucl. Fusion 58 076026 doi: 10.1088/1741-4326/aac527
|
[43] |
Ye C et al 2019 Nucl. Fusion 59 096044 doi: 10.1088/1741-4326/ab3000
|
[44] |
Jiang S et al 2022 Plasma Sci. Technol.
24 055101 doi: 10.1088/2058-6272/ac500b
|
[45] |
Han M K et al 2017 Nucl. Fusion 57 046019 doi: 10.1088/1741-4326/aa5d02
|
[46] |
Wang W et al 2018 Plasma Sci. Technol.
20 075101 doi: 10.1088/2058-6272/aab48f
|
[47] |
Hazeltine R D, Kotschenreuther M and Morrison P J 1985 Phys. Fluids 28 2466 doi: 10.1063/1.865255
|
[48] |
Bickerton R J, Connor J W and Taylor J B 1971 Nat. Phys. Sci.
229 110 doi: 10.1038/physci229110a0
|
[49] |
Strauss H 1977 Phys. Fluids 20 1354 doi: 10.1063/1.862018
|
[50] |
Morrison P J, Tassi E and Tronko N 2013 Phys. Plasmas 20 042109 doi: 10.1063/1.4801027
|
[51] |
Kikuchi Y et al 2006 Phys. Rev. Lett.
97 085003 doi: 10.1103/PhysRevLett.97.085003
|
[52] |
Hu Q M et al 2012 Nucl. Fusion 52 083011 doi: 10.1088/0029-5515/52/8/083011
|
[53] |
Tang W K et al 2019 Plasma Sci. Technol.
21 065103 doi: 10.1088/2058-6272/ab0a18
|
[54] |
Nies R, Reiman A H and Fisch N J 2022 Nucl. Fusion 62 086044 doi: 10.1088/1741-4326/ac79bd
|
[1] | Jingwen FAN, Huijie YAN, Ting LI, Yurong MAO, Jiaqi LI, Jian SONG. Surface charge characteristics in a three-electrode surface dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(11): 115403. DOI: 10.1088/2058-6272/ad7821 |
[2] | Victor F TARASENKO, Dmitry V BELOPLOTOV, Alexei N PANCHENKO, Dmitry A SOROKIN. Formation of diffuse and spark discharges between two needle electrodes with the scattering of particles[J]. Plasma Science and Technology, 2024, 26(9): 094003. DOI: 10.1088/2058-6272/ad34aa |
[3] | Ronggang WANG (王荣刚), Qizheng JI (季启政), Tongkai ZHANG (张桐恺), Qing XIA (夏清), Yu ZHANG (张宇), Jiting OUYANG (欧阳吉庭). Discharge characteristics of a needle-to-plate electrode at a micro-scale gap[J]. Plasma Science and Technology, 2018, 20(5): 54017-054017. DOI: 10.1088/2058-6272/aaa436 |
[4] | Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b |
[5] | Donglai WANG (王东来), Tiebing LU (卢铁兵), Yuan WANG (王源), Bo CHEN (陈博), Xuebao LI (李学宝). Measurement of surface charges on the dielectric film based on field mills under the HVDC corona wire[J]. Plasma Science and Technology, 2018, 20(5): 54008-054008. DOI: 10.1088/2058-6272/aaac26 |
[6] | Cheng PAN (潘成), Ju TANG (唐炬), Dibo WANG (王邸博), Yi LUO (罗毅), Ran ZHUO (卓然), Mingli FU (傅明利). Decay characters of charges on an insulator surface after different types of discharge[J]. Plasma Science and Technology, 2017, 19(7): 75503-075503. DOI: 10.1088/2058-6272/aa6436 |
[7] | WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06 |
[8] | H. Z. ALISOY, S. ALAGOZ, G. T. ALISOY, B. B. ALAGOZ. An Investigation of Ionic Flows in a Sphere-Plate Electrode Gap[J]. Plasma Science and Technology, 2013, 15(10): 1012-1019. DOI: 10.1088/1009-0630/15/10/10 |
[9] | MA Hailiang (马海亮), DONG Baogguo (董保国), YAN Yuliang (闫玉良). Microscopic Effective Charges and the B(E2) Values of Terminating States in Mirror Nuclei 51Mn and 51Fe[J]. Plasma Science and Technology, 2012, 14(7): 603-606. DOI: 10.1088/1009-0630/14/7/08 |
[10] | HAO Lixia, WANG Wei, ZHAN Huamao, HAN Xiaohui, DENG Lihong. Effect of space charge on the propagation path of air gap discharge[J]. Plasma Science and Technology, 2011, 13(6): 714-718. |