Citation: | Xiaoming ZHONG, Xiaolan ZOU, Chu ZHOU, Adi LIU, Ge ZHUANG, Xi FENG, Jin ZHANG, Jiaxu JI, Hongrui FAN, Shen LIU, Shifan WANG, Liutian GAO, Wenxiang SHI, Tao LAN, Hong LI, Jinlin XIE, Wenzhe MAO, Zixi LIU, Wandong LIU. Comparison of methods for turbulence Doppler frequency shift calculation in Doppler reflectometer[J]. Plasma Science and Technology, 2023, 25(9): 095104. DOI: 10.1088/2058-6272/acc8ba |
The Doppler reflectometer (DR), a powerful diagnostic for the plasma perpendicular velocity (u⊥) and turbulence measurement, has been widely used in various fusion devices. Many efforts have been put into extracting the Doppler shift from the DR signal. There are several commonly used methods for Doppler shift extraction, such as the phase derivative, the center of gravity, and symmetric fitting (SFIT). However, the strong zero-order reflection component around 0 kHz may interfere with the calculation of the Doppler shift. To avoid the influence of the zero-frequency peak, the asymmetric fitting (AFIT) method was designed to calculate the Doppler shift. Nevertheless, the AFIT method may lead to an unacceptable error when the Doppler shift is relatively small compared to the half width at half maximum (HWHM). Therefore, an improved method, which can remove the zero-frequency peak and fit the remaining Doppler peak with a Gaussian function, is devised to extract the Doppler shift. This method can still work reliably whether the HWHM is larger than the Doppler shift or not.
This work was supported in part by the National MCF Energy R&D Program (Nos. 2018YFE0311200 and 2017YFE0301204), National Natural Science Foundation of China (Nos. U1967206, 11975231 and 11922513). This work was also supported by the Users with Excellence Program of Hefei Science Center CAS (No. 2020HSC-UE009). We also acknowledge the EAST team for the aid.
[1] |
Wagner F et al 1982 Phys. Rev. Lett. 49 1408 doi: 10.1103/PhysRevLett.49.1408
|
[2] |
Viezzer E et al 2013 Nucl. Fusion 53 053005 doi: 10.1088/0029-5515/53/5/053005
|
[3] |
Biglari H, Diamond P H and Terry P W 1990 Phys. Fluids B: Plasma Phys. 2 1 doi: 10.1063/1.859529
|
[4] |
Zhou C et al 2013 Rev. Sci. Instrum. 84 103511 doi: 10.1063/1.4825344
|
[5] |
Xiao W W et al 2008 Plasma Sci. Technol. 10 403 doi: 10.1088/1009-0630/10/4/01
|
[6] |
Zou X L et al 1999 Poloidal rotation measurement in Tore Supra by oblique reflectometry Proc. ⅩⅩⅥ EPS Conf. on Controlled Fusion and Plasma Physics Maastricht: EPS p 1041
|
[7] |
Hennequin P et al 2004 Rev. Sci. Instrum. 75 3881 doi: 10.1063/1.1787920
|
[8] |
Conway G D et al 2004 Plasma Phys. Control. Fusion 46 951 doi: 10.1088/0741-3335/46/6/003
|
[9] |
Hillesheim J C et al 2009 Rev. Sci. Instrum. 80 083507 doi: 10.1063/1.3205449
|
[10] |
Happel T, Blanco E and Estrada T 2010 Rev. Sci. Instrum. 81 10D901 doi: 10.1063/1.3464475
|
[11] |
Tokuzawa T et al 2012 Rev. Sci. Instrum. 83 10E322 doi: 10.1063/1.4733736
|
[12] |
Crocker N A et al 2011 Plasma Phys. Control. Fusion 53 105001 doi: 10.1088/0741-3335/53/10/105001
|
[13] |
Hirsch M et al 2001 Plasma Phys. Control. Fusion 43 1641 doi: 10.1088/0741-3335/43/12/302
|
[14] |
Liu A D et al 2020 Nucl. Fusion 60 126016 doi: 10.1088/1741-4326/abb14a
|
[15] |
Conway G D et al 2005 Plasma Phys. Control. Fusion 47 1165 doi: 10.1088/0741-3335/47/8/003
|
[16] |
Happel T 2010 Doppler reflectometry in the TJ-Ⅱ stellarator: design of an optimized Doppler reflectometer and its application to turbulence and radial electric field studies Ph. D Thesis Universidad Carlos Ⅲ de Madrid, Leganés
|
[17] |
Ji J X et al 2021 Rev. Sci. Instrum. 92 043511 doi: 10.1063/5.0012520
|
[18] |
Feng X et al 2019 Rev. Sci. Instrum. 90 024704 doi: 10.1063/1.5075615
|
[19] |
Hillesheim J C et al 2010 Rev. Sci. Instrum. 81 10D907 doi: 10.1063/1.3466900
|
[20] |
Fanack C et al 1996 Plasma Phys. Control. Fusion 38 1915 doi: 10.1088/0741-3335/38/11/004
|
[21] |
Zhong X M et al 2022 Nucl. Fusion 62 066046 doi: 10.1088/1741-4326/ac60e9
|
[22] |
Zhong W L et al 2015 Nucl. Fusion 55 113005 doi: 10.1088/0029-5515/55/11/113005
|
1. | Yuan, J., Xu, M., Yu, Y. et al. Impact of resonant magnetic perturbation on blob motion and structure using a gas puff imaging diagnostic on the HL-2A tokamak. Plasma Science and Technology, 2023, 25(9): 095103. DOI:10.1088/2058-6272/accbaa |
2. | Wu, T., Xu, M., Nie, L. et al. Effect of edge turbulent transport on scrape-off layer width on HL-2A tokamak. Plasma Science and Technology, 2021, 23(2): 025101. DOI:10.1088/2058-6272/abd6b7 |
3. | Zweben, S.J., Fredrickson, E.D., Myra, J.R. et al. MHD-blob correlations in NSTX. Physics of Plasmas, 2020, 27(5): 052505. DOI:10.1063/5.0006515 |