Citation: | Yujie SONG, Jing YANG, Jiangzhou CUI, Benhua ZHAO, Weimin YANG, Haoyi LI, Ruixue WANG. Preparation of highly efficient antibacterial non-woven by facile plasma-induced graft polymerizing of DADMAC[J]. Plasma Science and Technology, 2023, 25(11): 114001. DOI: 10.1088/2058-6272/acd32b |
The development of surface modification technology for temperature sensitive fibers has been a huge challenge. In this work, a novel technique based on cold plasma treatment was developed for the preparation of anti-bacterial polypropylene (PP) fibers. The results showed that plasma treatment introduced a rough surface and polar groups, which acted as the anchor point and initiators for diallyldimethyl ammonium chloride (DADMAC) graft-polymerization. The fabricated PP membranes presented a high bacterial sterilization rate, as well as excellent adhesion force and washing durability. After ultrasonic treatment for 30 min, the physical coating sample had lost anti-bacterial effect, while the plasma grafted sample still showed a sterilization rate of 91.67%. This work provided a clean and novel DADMAC grafting method and it is also applicable for anti-bacterial material fabrication.
This work was supported by National Natural Science Foundation of China (Nos. 51877205 and 52011530191), Fundamental Research Funds for the Central Universities (No. buctrc201906) and Beijing Nova Program (No. 2022015).
[1] |
Li L et al 2007 Plasma Sci. Technol. 9 119 doi: 10.1088/1009-0630/9/1/24
|
[2] |
Zhao Z et al 2020 Plasma Sci. Technol. 22 065501 doi: 10.1088/2058-6272/ab6d26
|
[3] |
Gorji M et al 2012 J. Appl. Polym. Sci. 125 4135 doi: 10.1002/app.36611
|
[4] |
Rieger K A et al 2013 J. Mater. Chem. B 1 4531 doi: 10.1039/c3tb20795a
|
[5] |
Ming J et al 2012 J. Appl. Polym. Sci. 125 2148 doi: 10.1002/app.36354
|
[6] |
Kim H C et al 2019 IJPEM-GT 6 567 doi: 10.1007/s40684-019-00070-z
|
[7] |
Wang W et al 2010 J. Mater. Chem. 20 9068 doi: 10.1039/c0jm02120b
|
[8] |
Yan J et al 2019 Adv. Funct. Mater. 29 1907919 doi: 10.1002/adfm.201907919
|
[9] |
Zhang C et al 2022 Adv. Fiber Mater. 4 162 doi: 10.1007/s42765-021-00114-7
|
[10] |
Kedronova E et al 2015 Plasma Process. Polym. 12 1231 doi: 10.1002/ppap.201400235
|
[11] |
Hu X et al 2014 J. Control. Release 185 12 doi: 10.1016/j.jconrel.2014.04.018
|
[12] |
Lian H et al 2017 Mater. Sci. Eng. C 74 117 doi: 10.1016/j.msec.2017.02.024
|
[13] |
Chen Q et al 2020 Polym. Eng. Sci. 60 2887 doi: 10.1002/pen.25520
|
[14] |
Chen H et al 2016 Fibers Polym. 17 576 doi: 10.1007/s12221-016-5915-z
|
[15] |
Zhang K et al 2021 Sci. Rep. 11 8895 doi: 10.1038/s41598-021-88520-0
|
[16] |
Velasquez E et al 2021 Polym. 13 1502 doi: 10.3390/polym13091502
|
[17] |
Jokanovic V et al 2017 Plasma Sci. Technol. 19 125504 doi: 10.1088/2058-6272/aa8806
|
[18] |
Yin S H et al 2017 Plasma Sci. Technol. 19 015501 doi: 10.1088/1009-0630/19/1/015501
|
[19] |
Bandopadhay D et al 2001 J. Appl. Polym. Sci. 82 406 doi: 10.1002/app.1865
|
[20] |
Singh M et al 2017 J. Taibah Univ. Sci. 11 922 doi: 10.1016/j.jtusci.2016.09.011
|
[21] |
Taloni A et al 2018 Nat. Rev. Mater. 3 211 doi: 10.1038/s41578-018-0029-4
|
[22] |
Buffat P et al 1976 Phys. Rev. A 13 2287 doi: 10.1103/PhysRevA.13.2287
|
[23] |
Ju Y et al 2015 Microsyst. Technol. 21 1849 doi: 10.1007/s00542-014-2397-z
|
[24] |
Hu Q et al 2013 Plasma Sci. Technol. 15 429 doi: 10.1088/1009-0630/15/5/07
|
[25] |
Wu J et al 2021 Plasma Sci. Technol. 23 085504 doi: 10.1088/2058-6272/ac0109
|
[26] |
Hidzir N M et al 2013 Polym. 54 6536 doi: 10.1016/j.polymer.2013.10.003
|
[27] |
Moosburger-Will J et al 2017 Surf. Coat. Technol. 311 223 doi: 10.1016/j.surfcoat.2017.01.017
|
[28] |
Mizuno A et al 1986 IEEE Trans. Ind. Appl. IA-2 516 doi: 10.1109/TIA.1987.4504897
|
[29] |
Yang D et al 2013 Europhys. Lett. 102 65001 doi: 10.1209/0295-5075/102/65001
|
[30] |
Pal P et al 2018 J. Polym. Environ. 26 3272 doi: 10.1007/s10924-018-1213-8
|
[31] |
Wang R et al 2022 IEEE Trans. Plasma Sci. 50 863 doi: 10.1109/TPS.2022.3152492
|
[32] |
Liu K et al 2022 Phys. Chem. Chem. Phys. 24 8940 doi: 10.1039/D2CP00547F
|
[33] |
Hagelaar G et al 2005 Plasma Sources Sci. Technol. 14 722 doi: 10.1088/0963-0252/14/4/011
|
[34] |
Wang R et al 2022 Surf. Coat. Technol. 437 128365 doi: 10.1016/j.surfcoat.2022.128365
|
[35] |
Machala Z et al 2007 J. Mol. Spectrosc. 243 194 doi: 10.1016/j.jms.2007.03.001
|
[36] |
Bai Y et al 2022 Nano Energy 95 106992 doi: 10.1016/j.nanoen.2022.106992
|
[37] |
Bai L et al 2018 Chem. Eng. Res. Des. 132 445 doi: 10.1016/j.cherd.2018.01.046
|
[38] |
Yuan X W et al 2002 J. Adhes. Sci. Technol. 16 703 doi: 10.1163/156856102760099898
|
[39] |
Shao T et al 2010 Appl. Surf. Sci. 256 3888 doi: 10.1016/j.apsusc.2010.01.045
|
[40] |
Zeuner M et al 1995 Plasma Sources Sci. Technol. 4 406 doi: 10.1088/0963-0252/4/3/010
|
[41] |
Mozetič M 2003 Vac. 71 237 doi: 10.1016/S0042-207X(02)00744-3
|
[42] |
Fang J et al 2012 J. Nanomater. 2012 1 doi: 10.1155/2012/382639
|
[43] |
Liu C et al 2020 Chem. Eng. J. 384 123306 doi: 10.1016/j.cej.2019.123306
|
[44] |
Mehta A et al 2021 Mater. Sci. Eng. B 263 114750 doi: 10.1016/j.mseb.2020.114750
|
[45] |
Sun J et al 2016 Sep. Purif. Technol. 157 112 doi: 10.1016/j.seppur.2015.11.034
|
[46] |
Han S et al 1997 Surf. Coat. Technol. 93 261 doi: 10.1016/S0257-8972(97)00057-1
|
[47] |
Su L et al 2016 Sci. Rep. 6 24420 doi: 10.1038/srep24420
|
[48] |
Li Y et al 2006 J. Hosp. Infect. 62 58 doi: 10.1016/j.jhin.2005.04.015
|
[49] |
Maneerung T et al 2008 Carbohydr. Polym. 72 43 doi: 10.1016/j.carbpol.2007.07.025
|
[50] |
Teli M D et al 2013 Int. J. Biol. Macromol. 61 302 doi: 10.1016/j.ijbiomac.2013.07.015
|
[51] |
Wang Y et al 2017 Appl. Surf. Sci. 400 413 doi: 10.1016/j.apsusc.2016.12.188
|
[52] |
Gouda M et al 2010 J. Ind. Text. 39 203 doi: 10.1177/1528083709103142
|
[53] |
Yu D et al 2015 Appl. Surf. Sci. 357 1157 doi: 10.1016/j.apsusc.2015.09.074
|
[54] |
Bahloul W et al 2012 Mater. Chem. Phys. 134 399 doi: 10.1016/j.matchemphys.2012.03.008
|
[55] |
Bogdanovic U et al 2015 ACS Appl. Mater. Interfaces 7 1955 doi: 10.1021/am507746m
|
[56] |
Babu K F et al 2012 Carbohydr. Polym. 90 1557 doi: 10.1016/j.carbpol.2012.07.030
|
[57] |
Said-Galiev E E et al 2011 Nanotechnol. Russ. 6 341 doi: 10.1134/S1995078011030153
|
[58] |
Thampi V V A et al 2015 J. Nanopart. Res. 17 57 doi: 10.1007/s11051-014-2853-9
|
[59] |
Helmy H M et al 2017 J. Text. Inst. 108 1871 doi: 10.1080/00405000.2017.1298206
|
[60] |
Seebock R et al 2001 Surf. Coat. Technol. 142–144 455 doi: 10.1016/S0257-8972(01)01085-4
|
1. | Yang, Y., Sun, B., Liu, J. et al. Effects of discharge frequency on the conversion of n-hexadecane by pulsed liquid-phase discharge in recycle and batch devices. Journal of the Energy Institute, 2024. DOI:10.1016/j.joei.2024.101807 | |
2. | Zhang, D., Yang, X., Liu, F. et al. Effect of H2O Volume Fraction on the Uniformity of Nanosecond Pulsed N2 DBD | [H2O 体积分数对纳秒脉冲氮气 DBD 均匀性的影响]. Gaodianya Jishu/High Voltage Engineering, 2024, 50(9): 4252-4260. DOI:10.13336/j.1003-6520.hve.20231093 | |
3. | Li, M., Wang, X., Zhao, Y. et al. Influence of Nanosecond Pulse Voltage Amplitude and Rising/Falling Edge Time on the Uniformity of Atmospheric Pressure N2 DBD | [纳秒脉冲电压幅值和上升/下降沿时间对大气压氮气 DBD 均匀性的影响]. Gaodianya Jishu/High Voltage Engineering, 2024, 50(2): 852-860. DOI:10.13336/j.1003-6520.hve.20222062 | |
4. | Lim, M., Nimelnair, S., Lea-Langton, A.R. Reforming of Fluctuating Biogas Compositions with Non-thermal Plasma for Enhancement of Spark Ignition Engine Performance. Plasma Chemistry and Plasma Processing, 2022, 42(2): 283-301. DOI:10.1007/s11090-021-10219-x |