Citation: | Shuailing LU, Xuebin MA, Songlin LIU. Preliminary electromagnetic analysis of the COOL blanket for CFETR[J]. Plasma Science and Technology, 2024, 26(1): 015601. DOI: 10.1088/2058-6272/ad0c23 |
The supercritical CO2 cOoled Lithium-Lead (COOL) blanket has been designed as one advanced blanket candidate for the Chinese Fusion Engineering Test Reactor (CFETR). This work focuses on the electromagnetic (EM) loads (Maxwell force and Lorentz force) acting on the COOL blanket, which are important mechanical loads in further structural analysis of the COOL blanket. A 3D electromagnetic analysis is performed using the ANSYS finite element method to obtain EM loads on the COOL blanket in this study. At first, the magnetic scalar potential (MSP) method is used to obtain the magnetic field and the Maxwell force on the COOL blanket. Then, the magnetic vector potential (MVP) method is performed during a plasma disruption event to get the eddy current distribution. At last, a multi-step method is adopted for the calculation of the Lorentz force and the torque. The maximum Lorentz forces of inboard and outboard blanket structural components are 5624 kN and 2360 kN respectively.
[1] |
Chen L et al 2021 Fusion Eng. Des. 173 112800 doi: 10.1016/j.fusengdes.2021.112800
|
[2] |
Albanese R et al 2010 IEEE Trans. Magn. 46 2935 doi: 10.1109/TMAG.2010.2048560
|
[3] |
Ma X B, Li M and Liu S L 2018 Fusion Eng. Des. 131 21 doi: 10.1016/j.fusengdes.2018.04.037
|
[4] |
Wang M et al 2019 Prog. Nucl. Energy 111 150 doi: 10.1016/j.pnucene.2018.11.002
|
[5] |
Shiba K et al 1997 JAERI Technical Report JAERI-Tech 97 38
|
[6] |
Roccella R et al 2008 Fusion Eng. Des. 83 1212 doi: 10.1016/j.fusengdes.2008.06.058
|
[7] |
Song Y T et al 2022 Fusion Eng. Des. 183 113247 doi: 10.1016/j.fusengdes.2022.113247
|
[8] |
Zhai Y H et al 2017 Fusion Eng. Des. 123 743 doi: 10.1016/j.fusengdes.2017.05.073
|
[9] |
Peng X B et al 2020 Fusion Eng. Des. 152 111434 doi: 10.1016/j.fusengdes.2019.111434
|
[10] |
Guan W H et al 2020 Fusion Eng. Des. 155 111719 doi: 10.1016/j.fusengdes.2020.111719
|
[11] |
Lei M Z et al 2013 Plasma Sci. Technol. 15 830 doi: 10.1088/1009-0630/15/8/22
|
[12] |
Davis J W and Smith P D 1996 J. Nucl. Mater. 233--237 1593 doi: 10.1016/S0022-3115(96)00202-4
|
[13] |
Soto C, Smolentsev S and García-Rosales C 2020 Fusion Eng. Des. 151 111381 doi: 10.1016/j.fusengdes.2019.111381
|