Advanced Search+
Zihan LI, Shangchuan YANG, Xinhang XU, Lifu ZHANG, Chengming QU, Chengpu LI, Ge ZHUANG, Jinlin XIE. A synthetic diagnostics platform for microwave imaging diagnostics in tokamaks[J]. Plasma Science and Technology, 2024, 26(3): 034006. DOI: 10.1088/2058-6272/ad0d4c
Citation: Zihan LI, Shangchuan YANG, Xinhang XU, Lifu ZHANG, Chengming QU, Chengpu LI, Ge ZHUANG, Jinlin XIE. A synthetic diagnostics platform for microwave imaging diagnostics in tokamaks[J]. Plasma Science and Technology, 2024, 26(3): 034006. DOI: 10.1088/2058-6272/ad0d4c

A synthetic diagnostics platform for microwave imaging diagnostics in tokamaks

More Information
  • Author Bio:

    Jinlin XIE: jlxie@ustc.edu.cn

  • Corresponding author:

    Jinlin XIE, jlxie@ustc.edu.cn

  • Received Date: June 29, 2023
  • Revised Date: September 21, 2023
  • Accepted Date: September 25, 2023
  • Available Online: April 14, 2024
  • Published Date: March 05, 2024
  • Interpreting experimental diagnostics data in tokamaks, while considering non-ideal effects, is challenging due to the complexity of plasmas. To address this challenge, a general synthetic diagnostics (GSD) platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging. This platform utilizes plasma profiles as input and incorporates the finite-difference time domain, ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas. Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform. Finally, 2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data. This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.

  • [1]
    Park H K 2019 Adv. in Phys.: X 4 1633956
    [2]
    Tobias B J et al 2012 Rev. Sci. Instrum. 83 10E329 doi: 10.1063/1.4733742
    [3]
    Mazzucato E et al 1998 Rev. Sci. Instrum. 69 2201 doi: 10.1063/1.1149121
    [4]
    Mazzucato E et al 1998 Rev. Sci. Instrum. 69 1691 doi: 10.1063/1.1148828
    [5]
    Gao B X et al 2018 J. Instrum. 13 P02009 doi: 10.1088/1748-0221/13/02/P02009
    [6]
    Zhu Y L et al 2016 Rev. Sci. Instrum. 87 11D901 doi: 10.1063/1.4959162
    [7]
    Wang Y et al 2017 Nucl. Fusion 57 072007 doi: 10.1088/1741-4326/aa5e30
    [8]
    Li Z H et al 2022 2022 47th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THZ 2022) Sep. 04 - 09, 2022, Rotterdam, Netherlands
    [9]
    Shi L 2017 Synthetic Diagnostics Platform for Fusion Plasma and a Two-Dimensional Synthetic Electron Cyclotron Emission Imaging Code PhD Thesis Princeton University
    [10]
    Kramer G J et al 2004 Plasma Phys. Control. Fusion 46 695 doi: 10.1088/0741-3335/46/4/009
    [11]
    Conway G D et al 2002 Plasma Phys. Control. Fusion 44 451 doi: 10.1088/0741-3335/44/4/305
    [12]
    Ren X X et al 2014 Rev. Sci. Instrum. 85 11D863 doi: 10.1063/1.4895100
    [13]
    Williams T 2014 Full-Wave Simulation of High-Frequency Electromagnetic Propagation Through Inhomogeneous Plasma PhD Thesis University of York
    [14]
    Thomas M B 2017 3D Full-wave Modelling of Microwave Interactions with Plasma Density Fluctuations PhD Thesis University of York
    [15]
    Ayub M K et al 2016 J. Instrum. 11 T03006 doi: 10.1088/1748-0221/11/03/T03006
    [16]
    Li J X et al 2018 Rev. Sci. Instrum. 89 093506 doi: 10.1063/1.5012778
    [17]
    Chen M et al 2018 Rev. Sci. Instrum. 89 10H117 doi: 10.1063/1.5035426
    [18]
    Xu M et al 2011 Plasma Sci. Technol. 13 167 doi: 10.1088/1009-0630/13/2/08
    [19]
    Costley A E et al 1974 Phys. Rev. Lett. 33 758 doi: 10.1103/PhysRevLett.33.758
    [20]
    Bornatici M 1982 Plasma Phys. 24 629 doi: 10.1088/0032-1028/24/6/005
    [21]
    Peters M et al 1995 Nucl. Fusion 35 873 doi: 10.1088/0029-5515/35/7/I10
    [22]
    Yu G Y et al 2022 Plasma Phys. Control. Fusion 64 095014 doi: 10.1088/1361-6587/ac7ee7
    [23]
    Yu G Y et al 2022 Rev. Sci. Instrum. 93 103528 doi: 10.1063/5.0099348
    [24]
    Shi L et al 2016 Rev. Sci. Instrum. 87 11D303 doi: 10.1063/1.4961553
    [25]
    Nazikian R et al 2001 Phys. Plasmas 8 1840 doi: 10.1063/1.1362534
    [26]
    Berenger J P et al 1994 J. Comput. Phys. 114 185 doi: 10.1006/jcph.1994.1159
    [27]
    Berenger J P et al 1996 J. Comput. Phys. 127 363 doi: 10.1006/jcph.1996.0181
    [28]
    Hutchinson I H 2002 Principles of Plasma Diagnostics Cambridge University Press
  • Related Articles

    [1]N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
    [2]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [3]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [4]Kerong HE (何科荣), Hui CHEN (陈辉), Sanqiu LIU (刘三秋). Effect of plasma absorption on dust lattice waves in hexagonal dust crystals[J]. Plasma Science and Technology, 2018, 20(4): 45001-045001. DOI: 10.1088/2058-6272/aaaadb
    [5]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [6]FENG Fan (冯帆), ZHANG Yongliang (张永亮), YAN Jia (闫佳), LIU Fucheng (刘富成), DONG Lifang (董丽芳), HE Yafeng (贺亚峰). Cycloid Motions of Aggregates in a Dust Plasma[J]. Plasma Science and Technology, 2016, 18(1): 67-71. DOI: 10.1088/1009-0630/18/1/12
    [7]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [8]HONG Rongjie (洪荣杰), YANG Zhongshi (杨钟时), NIU Guojian (牛国鉴), LUO Guangnan (罗广南). A Molecular Dynamics Study on the Dust-Plasma/Wall Interactions in the EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(4): 318-322. DOI: 10.1088/1009-0630/15/4/03
    [9]MA Donglin (马栋林), ZHANG Xijun (张玺君), ZHANG Liping (张丽萍). The Effects of Inhomogeneity and Adiabatic Dusty Charge Fluctuation on Solitary Waves[J]. Plasma Science and Technology, 2013, 15(1): 7-11. DOI: 10.1088/1009-0630/15/1/02
    [10]Yukihiro TOMITA, Gakushi KAWAMURA, HUANG Zhihui, PAN Yudong, YAN Longwen. Dust Charging and Dynamics in Tokamaks[J]. Plasma Science and Technology, 2011, 13(1): 11-14.
  • Cited by

    Periodical cited type(4)

    1. Fu, J., Zhang, L., Zhang, M. Effect of dust size distribution and nonadiabatic charge variation on dispersion relation for linear waves in inhomogeneous complex plasmas. AIP Advances, 2024, 14(3): 035004. DOI:10.1063/5.0194497
    2. Zhang, L., Wang, X., Zheng, J. et al. Linear characteristics of dust acoustic waves in two dimensional inhomogeneous complex plasmas. AIP Advances, 2023, 13(5): 055012. DOI:10.1063/5.0150589
    3. Zhang, L.P., Zheng, J.Q. Dust acoustic shock waves in nonuniform dusty plasmas with kappa-distributed ions and electrons, nonadiabatic dust charge fluctuation and dust size distribution. Indian Journal of Physics, 2023. DOI:10.1007/s12648-023-03036-9
    4. Zhang, L., Zheng, J., Liu, C. et al. The shock wave solutions of modified ZK Burgers equation in inhomogeneous dusty plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(3): 249-257. DOI:10.1515/zna-2021-0283

    Other cited types(0)

Catalog

    Article views (25) PDF downloads (16) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return