Citation: | Junwei JIA, Zhifeng LIU, Congyuan PAN, Huaqin XUE. Detection of Al, Mg, Ca, and Zn in copper slag by LIBS combined with calibration curve and PLSR methods[J]. Plasma Science and Technology, 2024, 26(2): 025507. DOI: 10.1088/2058-6272/ad1045 |
The precise measurement of Al, Mg, Ca, and Zn composition in copper slag is crucial for effective process control of copper pyrometallurgy. In this study, a remote laser-induced breakdown spectroscopy (LIBS) system was utilized for the spectral analysis of copper slag samples at a distance of 2.5 m. The composition of copper slag was then analyzed using both the calibration curve (CC) method and the partial least squares regression (PLSR) analysis method based on the characteristic spectral intensity ratio. The performance of the two analysis methods was gauged through the determination coefficient (R2), average relative error (ARE), root mean square error of calibration (RMSEC), and root mean square error of prediction (RMSEP). The results demonstrate that the PLSR method significantly improved both R2 for the calibration and test sets while reducing ARE, RMSEC, and RMSEP by 50% compared to the CC method. The results suggest that the combination of LIBS and PLSR is a viable approach for effectively detecting the elemental concentration in copper slag and holds potential for online detection of the elemental composition of high-temperature molten copper slag.
This work is supported by funding for research activities of postdoctoral researchers in Anhui Province and special funds for developing Anhui Province’s industrial “three highs” and high-tech industries.
[1] |
Lohmeier S et al 2021 J. S. Afr. Inst. Min. Metall. 121 129
|
[2] |
Jiang L F et al 2022 J. Phys.: Conf. Ser. 2268 012006
|
[3] |
Chen J et al 2022 JOM 74 185 doi: 10.1007/s11837-021-04920-7
|
[4] |
Hahn D W and Omenetto N 2010 Appl. Spectrosc. 64 335A doi: 10.1366/000370210793561691
|
[5] |
Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347 doi: 10.1366/11-06574
|
[6] |
Ma S X et al 2023 J. Hazard. Mater. 443 130188 doi: 10.1016/j.jhazmat.2022.130188
|
[7] |
Elhamdaoui I et al 2022 J. Anal. At. Spectrom. 37 2537 doi: 10.1039/D2JA00120A
|
[8] |
Bol'shakov A A et al 2021 Spectrochim. Acta Part B 179 106094 doi: 10.1016/j.sab.2021.106094
|
[9] |
Aints M et al 2018 J. Spectrosc. 2018 4605925
|
[10] |
Myakalwar A K et al 2021 Minerals 11 1073
|
[11] |
Meng D S et al 2017 Spectrochim. Acta Part B 137 39 doi: 10.1016/j.sab.2017.09.011
|
[12] |
Sun L X et al 2018 Spectrochim. Acta Part B 142 29 doi: 10.1016/j.sab.2018.02.005
|
[13] |
Zeng G D et al 2022 Plasma Sci. Technol. 24 084009 doi: 10.1088/2058-6272/ac72e3
|
[14] |
Petersson J, Gilbert-Gatty M and Bengtson A 2020 J. Anal. At. Spectrom. 35 1848 doi: 10.1039/D0JA00188K
|
[15] |
Hai R et al 2021 Appl. Phys. B 127 37
|
[16] |
Dai Y J et al 2021 J. Anal. At. Spectrom. 36 1634 doi: 10.1039/D1JA00082A
|
[17] |
Cui M C et al 2022 Spectrochim. Acta Part B 191 106398 doi: 10.1016/j.sab.2022.106398
|
[18] |
Ahmed N et al 2022 Anal. Lett. 55 2239 doi: 10.1080/00032719.2022.2052307
|
[19] |
François E et al 2020 Spectrochim. Acta Part B 170 105921 doi: 10.1016/j.sab.2020.105921
|
[20] |
Yoon S et al 2021 Appl. Sci. 11 7154 doi: 10.3390/app11157154
|
[21] |
Kashiwakura S and Wagatsuma K 2020 ISIJ Int. 60 1245 doi: 10.2355/isijinternational.ISIJINT-2019-549
|
[22] |
Brinkmann P et al 2023 Minerals 13 113
|
[23] |
Pan C Y et al 2021 Metall. Anal. 41 41 (in Chinese)
|
[24] |
Han Z Y et al 2015 Spectrosc. Spect. Anal. 35 304 (in Chinese)
|
[25] |
Kramida A et al 2020 NIST atomic spectra database (version 5.8) Gaithersburg: National Institute of Standards and Technology
|
[26] |
Sato T et al 2019 Plasma Sci. Technol. 21 034021 doi: 10.1088/2058-6272/aaf5ef
|
[1] | H L SWAMI, M ABHANGI, Sanchit SHARMA, S TIWARI, A N MISTRY, V VASAVA, V MEHTA, S VALA, C DANANI, V CHAUDHARI, P CHAUDHURI. A neutronic experiment to support the design of an Indian TBM shield module for ITER[J]. Plasma Science and Technology, 2019, 21(6): 65601-065601. DOI: 10.1088/2058-6272/ab079a |
[2] | Yuqing YANG (杨宇晴), Xinjun ZHANG (张新军), Yanping ZHAO (赵燕平), Chengming QIN (秦成明), Yan CHENG (程艳), Yuzhou MAO (毛玉周), Hua YANG (杨桦), Jianhua WANG (王健华), Shuai YUAN (袁帅), Lei WANG (王磊), Songqing JU (琚松青), Gen CHEN (陈根), Xu DENG, (邓旭), Kai ZHANG (张开), Baonian WAN (万宝年), Jiangang LI (李建刚), Yuntao SONG (宋云涛), Xianzu GONG (龚先祖), Jinping QIAN (钱金平), Tao ZHANG (张涛). Recent ICRF coupling experiments on EAST[J]. Plasma Science and Technology, 2018, 20(4): 45102-045102. DOI: 10.1088/2058-6272/aaa599 |
[3] | Pengfei ZHANG (张鹏飞), Yang HU (胡杨), Jiang SUN (孙江), Yan SONG (宋岩), Jianfeng SUN (孙剑锋), Zhiming YAO (姚志明), Peitian CONG (丛培天), Mengtong QIU (邱孟通), Aici QIU (邱爱慈). Design and experimental research on a selfmagnetic pinch diode under MV[J]. Plasma Science and Technology, 2018, 20(1): 14014-014014. DOI: 10.1088/2058-6272/aa8592 |
[4] | Qingmei XIAO (肖青梅), Zhibin WANG (王志斌), Xiaogang WANG (王晓钢), Chijie XIAO (肖池阶), Xiaoyi YANG (杨肖易), Jinxing ZHENG (郑金星). Conceptual design of Dipole Research Experiment (DREX)[J]. Plasma Science and Technology, 2017, 19(3): 35301-035301. DOI: 10.1088/2058-6272/19/3/035301 |
[5] | GUO Bin (郭斌 ), SONG Zhiquan (宋执权 ), FU Peng (傅鹏 ), JIANG Li (蒋力 ), LI Jinchao (李金超), WANG Min (王敏), DONG Lin (董琳). Thermal Dissipation Modelling and Design of ITER PF Converter Alternating Current Busbar[J]. Plasma Science and Technology, 2016, 18(10): 1049-1054. DOI: 10.1088/1009-0630/18/10/14 |
[6] | HUANG Haihong(黄海宏), YIN Ming(殷明), WANG Haixin(王海欣). Design of Controller for New EAST Fast Control Power Supply[J]. Plasma Science and Technology, 2014, 16(11): 1068-1073. DOI: 10.1088/1009-0630/16/11/13 |
[7] | LIN Qifu(林启富), NI Guohua(倪国华), JIANG Yiman(江贻满), WU Wenwei(吴文伟), MENG Yuedong(孟月东). Degradation of Alizarin Red by Hybrid Gas-Liquid Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(11): 1036-1041. DOI: 10.1088/1009-0630/16/11/07 |
[8] | LI Changzheng(李长征), HU Jiansheng(胡建生), CHEN Yue(陈跃), LIANG Yunfeng(梁云峰), LI Jiangang(李建刚), LI Jiahong(李加宏), WU Jinhua(吴金华), HAN Xiang(韩翔). First Results of Pellet Injection Experiments on EAST[J]. Plasma Science and Technology, 2014, 16(10): 913-918. DOI: 10.1088/1009-0630/16/10/03 |
[9] | CHENG Jia(程嘉), ZHU Yu(朱煜), JI Linhong(季林红). Modeling Approach and Analysis of the Structural Parameters of an Inductively Coupled Plasma Etcher Based on a Regression Orthogonal Design[J]. Plasma Science and Technology, 2012, 14(12): 1059-1068. DOI: 10.1088/1009-0630/14/12/05 |
[10] | JI Liangliang(吉亮亮), ZOU Shuai(邹帅), SHEN Mingrong(沈明荣), XIN Yu(辛煜). Radio Frequency Underwater Discharge Operation and Its Application to Congo Red Degradation[J]. Plasma Science and Technology, 2012, 14(2): 111-117. DOI: 10.1088/1009-0630/14/2/06 |
1. | Liu, Z., Chen, M., Huang, H. et al. Investigation of thermodynamic properties in picosecond laser-produced plasmas on silicon. AIP Advances, 2023, 13(9): 095002. DOI:10.1063/5.0165693 | |
2. | Bai, X., Hai, R., He, Z. et al. Quantitative analysis of tungsten in steel by one-point calibration laser-induced breakdown spectroscopy in vacuum. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106724 | |
3. | Irvine, S., Andrews, H., Myhre, K. et al. Radiative transition probabilities of neutral and singly ionized rare earth elements (La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) estimated by laser-induced breakdown spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2023. DOI:10.1016/j.jqsrt.2023.108486 | |
4. | Kościelniak, P.. Calibration in Analytical Science: Methods and Procedures. Calibration in Analytical Science: Methods and Procedures, 2023. DOI:10.1002/9783527831111 | |
5. | Martínez-Minchero, M., Cobo, A., Méndez-Vicente, A. et al. Comparison of Mg/Ca concentration series from Patella depressa limpet shells using CF-LIBS and LA-ICP-MS. Talanta, 2023. DOI:10.1016/j.talanta.2022.123757 | |
6. | Hu, Z., Zhang, D., Wang, W. et al. A review of calibration-free laser-induced breakdown spectroscopy. TrAC - Trends in Analytical Chemistry, 2022. DOI:10.1016/j.trac.2022.116618 | |
7. | Zhang, N., Ou, T., Wang, M. et al. A Brief Review of Calibration-Free Laser-Induced Breakdown Spectroscopy. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.887171 | |
8. | Huang, B., Wang, X.-H., Jiang, P. Research on Detection of Cement Raw Material Content Based on Near-Infrared Spectroscopy | [基于近红外光谱检测技术的水泥生料成分含量检测研究]. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2022, 42(3): 737-742. DOI:10.3964/j.issn.1000-0593(2022)03-0737-06 | |
9. | Liu, Z., Guo, C., Chen, L. et al. Thermodynamic equilibrium state analysis of silicon plasma induced by picosecond laser. Proceedings of SPIE - The International Society for Optical Engineering, 2022. DOI:10.1117/12.2616219 | |
10. | Chen, L., Deng, H., Xiong, Z. et al. Investigation of shielding effects on picosecond laser-induced copper plasma characteristics under different focusing distances. Photonics, 2021, 8(12): 536. DOI:10.3390/photonics8120536 | |
11. | Liu, Z., Zhao, G., Guo, C. et al. Spatially and temporally resolved evaluation of local thermodynamic equilibrium for laser-induced plasma in a high vacuum. Journal of Analytical Atomic Spectrometry, 2021, 36(11): 2362-2369. DOI:10.1039/d1ja00199j | |
12. | Han, L., Liu, F., Zhang, L. An improved sub-model plsr quantitative analysis method based on svm classifier for chemcam laser-induced breakdown spectroscopy. Symmetry, 2021, 13(2): 1-13. DOI:10.3390/sym13020319 | |
13. | Qasim, M., Anwar-Ul-Haq, M., Sher Afgan, M. et al. Quantitative analysis of saindha salt using laser induced breakdown spectroscopy and cross-validation with ICP-MS. Plasma Science and Technology, 2020, 22(7): 074007. DOI:10.1088/2058-6272/ab7f3e | |
14. | Zhang, L.-H., Zhang, L., Wu, Z.-C. et al. Quantitative Modeling for Earth Sample's LIBS Spectra of Curiosity Rover Based on Inception Network | [基于Inception网络的好奇号火星车地面标样LIBS光谱定量建模]. Guangzi Xuebao/Acta Photonica Sinica, 2020, 49(6): 0630002. DOI:10.3788/gzxb20204906.0630002 | |
15. | Carter, S., Clough, R., Fisher, A. et al. Atomic spectrometry update: Review of advances in the analysis of metals, chemicals and materials. Journal of Analytical Atomic Spectrometry, 2019, 34(11): 2159-2216. DOI:10.1039/c9ja90058f | |
16. | Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873 |