Advanced Search+
Yifei ZHAO, Yueqiang LIU, Guangzhou HAO, Zhengxiong WANG, Guanqi DONG, Shuo WANG, Chunyu LI, Guanming YANG, Yutian MIAO, Yongqin WANG. Loss of energetic particles due to feedback control of resistive wall mode in HL-3[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad547e
Citation: Yifei ZHAO, Yueqiang LIU, Guangzhou HAO, Zhengxiong WANG, Guanqi DONG, Shuo WANG, Chunyu LI, Guanming YANG, Yutian MIAO, Yongqin WANG. Loss of energetic particles due to feedback control of resistive wall mode in HL-3[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad547e

Loss of energetic particles due to feedback control of resistive wall mode in HL-3

  • Effects of three-dimensional (3D) magnetic field perturbations due to feedback control of an unstable n=1 ( n is toroidal mode number) resistive wall mode (RWM) on the energetic particle (EP) losses are systematically investigated for the HL-3 tokamak. The MARS-F (Liu et al 2000 Phys. Plasmas 7 3681) code, facilitated by the test particle guiding center tracing module REORBIT, is utilized for the study. The RWM is found to generally produce no EP loss for co-current particles in HL-3. Assuming the same perturbation level at the sensor location for the close-loop system, feedback produces nearly the same loss of counter-current EPs compared to the open-loop case. Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part (reflecting the fact that the RWM is more stable with feedback), the counter-current EP loss is found significantly reduced in the former. Most of EP losses occur only for particles launched close to the plasma edge, while particles launched further away from the plasma boundary experience much less loss. The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary. Taking into account the full gyro-orbit of particles while approaching the limiting surface, REORBIT finds slightly enhanced loss fraction.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return