Advanced Search+
Jing FU, Juan HUANG, Jinfang WANG, Limin YU, Cheonho BAE, Jiafeng CHANG, Kaiyang HE, Yueheng HUANG, Pan LI, Wei GAO, Yifei JIN, Tianqi JIA, Minrui WANG, Yanxu SUN, Chang SHI, Shusong WANG, Xihui WANG, Hailin ZHAO, Yifeng ZHENG, Yahong XIE, Guoqiang ZHONG, Qing ZANG, Haiqing LIU, Jinping QIAN. Studies of beam ion confinement to enhance plasma performance on EAST[J]. Plasma Science and Technology, 2024, 26(12): 125103. DOI: 10.1088/2058-6272/ad743d
Citation: Jing FU, Juan HUANG, Jinfang WANG, Limin YU, Cheonho BAE, Jiafeng CHANG, Kaiyang HE, Yueheng HUANG, Pan LI, Wei GAO, Yifei JIN, Tianqi JIA, Minrui WANG, Yanxu SUN, Chang SHI, Shusong WANG, Xihui WANG, Hailin ZHAO, Yifeng ZHENG, Yahong XIE, Guoqiang ZHONG, Qing ZANG, Haiqing LIU, Jinping QIAN. Studies of beam ion confinement to enhance plasma performance on EAST[J]. Plasma Science and Technology, 2024, 26(12): 125103. DOI: 10.1088/2058-6272/ad743d

Studies of beam ion confinement to enhance plasma performance on EAST

More Information
  • Author Bio:

    Juan HUANG: juan.huang@ipp.ac.cn

  • Corresponding author:

    Juan HUANG, juan.huang@ipp.ac.cn

  • Received Date: May 27, 2024
  • Revised Date: August 25, 2024
  • Accepted Date: August 26, 2024
  • Available Online: August 27, 2024
  • Published Date: November 12, 2024
  • A key physics issue for achieving steady-state high-performance plasmas on EAST tokamak is to decrease beam-ion losses to improve plasma confinement during neutral beam injections (NBIs). To decrease the beam losses, previous counter-Ip NBI injections are upgraded to co-Ip injections. Analysis shows that due to the reversed direction of drift across the flux surfaces caused by the pitch angle, the beam prompt loss fraction decreases from about 49% to 3% after the upgrade. Moreover, because of the change of entire beam path, beam shine-through (ST) loss fraction for counter-Ip tangential and counter-Ip perpendicular injections is reversed to co-Ip tangential and co-Ip perpendicular injections, respectively. Due to the change in the initial trapped-confined beam ion fraction caused by the peaked pitch profiles, the losses induced by toroidal ripple field are also reversed after the upgrade. To further improve the beam-ion confinement under the present NBI layout, the amplitudes of toroidal field are increased from 1.75 to 2.20 T. Result shows that, due to the smaller orbit width and peaked pitch angle profile, the beam prompt loss power is lower with higher toroidal field. Due to the synergy of higher initial trapped-confined beam ion fraction and narrower Goldston-White-Boozer (GWB) boundary, the loss induced by ripple diffusion is higher with higher toroidal field. The combined effect of beam ST loss, prompt loss and ripple loss, contributes to the increase in beam ion density. The decrease in beam loss power enhances beam heating efficiency, especially the fraction of beam heating ions. Finally, comparison between simulation and measurement by 235U fission chamber (FC) indicates that the increase in neutron rate is mainly contributed by improvement of beam-ion confinement. This study can provide potential support for beam operation and high-Ti experiment on EAST tokamak.

  • This work was supported by the National Key R&D Program of China (No. 2019YFE03020004), National Natural Science Foundation of China (Nos. 12175272 and 12347186), Anhui Provincial Natural Science Foundation (No. 2008085J04), Anhui Provincial Key R&D Program (No. 202104b11020003), Collaborative Innovation Program of Hefei Science Center, CAS (No. YZJJ2023QN17), State Key Laboratory of Advanced Electromagnetic Technology (No. AET 2024KF010). Numerical computations were performed on the ShenMa High Performance Computing Cluster in the Institute of Plasma Physics, Chinese Academy of Sciences.

  • [1]
    Fasoli A et al 2007 Nucl. Fusion 47 S264 doi: 10.1088/0029-5515/47/6/S05
    [2]
    Ding X T and Chen W 2018 Plasma Sci. Technol. 20 094008 doi: 10.1088/2058-6272/aad27a
    [3]
    Sasao M et al 2008 Fusion Sci. Technol. 53 604 doi: 10.13182/FST08-A1681
    [4]
    Zhong G Q et al 2016 Rev. Sci. Instrum. 87 11D820 doi: 10.1063/1.4960814
    [5]
    Gu X et al 2020 Plasma Sci. Technol. 22 025103 doi: 10.1088/2058-6272/ab4cad
    [6]
    Vincenzi P et al 2021 Plasma Phys. Control. Fusion 63 065014 doi: 10.1088/1361-6587/abf402
    [7]
    Khodak A et al 2019 Fusion Eng. Des. 146 1233 doi: 10.1016/j.fusengdes.2019.02.047
    [8]
    Spong D A 2011 Phys. Plasmas 18 056109 doi: 10.1063/1.3575626
    [9]
    Huang J et al 2020 Nucl. Fusion 60 016002 doi: 10.1088/1741-4326/ab443a
    [10]
    Wang J F et al 2021 Chin. Phys. Lett. 38 055203 doi: 10.1088/0256-307X/38/5/055203
    [11]
    Wu B et al 2017 Plasma Phys. Control. Fusion 59 025004 doi: 10.1088/1361-6587/59/2/025004
    [12]
    Xu X Y et al 2020 Plasma Sci. Technol. 22 085101 doi: 10.1088/2058-6272/ab8973
    [13]
    Wang J F et al 2023 Fusion Eng. Des. 188 113416 doi: 10.1016/j.fusengdes.2022.113416
    [14]
    Liu L et al 2018 Nucl. Fusion 58 096009 doi: 10.1088/1741-4326/aacb3c
    [15]
    Heidbrink W W et al 2009 Plasma Phys. Control. Fusion 51 125001 doi: 10.1088/0741-3335/51/12/125001
    [16]
    Shinohara K et al 2012 Nucl. Fusion 52 094008 doi: 10.1088/0029-5515/52/9/094008
    [17]
    Liu X G et al 2020 Nucl. Fusion 60 046032 doi: 10.1088/1741-4326/ab742d
    [18]
    Felici F et al 2013 Nucl. Fusion 53 113018 doi: 10.1088/0029-5515/53/11/113018
    [19]
    Varje J et al 2016 Nucl. Fusion 56 046014 doi: 10.1088/0029-5515/56/4/046014
    [20]
    La Haye R J et al 2002 Phys. Plasmas 9 2051 doi: 10.1063/1.1456066
    [21]
    Kong M et al 2022 Plasma Phys. Control. Fusion 64 044008 doi: 10.1088/1361-6587/ac48be
    [22]
    Bardóczi L et al 2019 Nucl. Fusion 59 126047 doi: 10.1088/1741-4326/ab472d
    [23]
    Garcia-Munoz M et al 2019 Plasma Phys. Control. Fusion 61 054007 doi: 10.1088/1361-6587/aaef08
    [24]
    Pinches S D et al 2015 Phys. Plasmas 22 021807 doi: 10.1063/1.4908551
    [25]
    Fu J et al 2022 Plasma Phys. Control. Fusion 64 095006 doi: 10.1088/1361-6587/ac77b7
    [26]
    Wu S T and the EAST Team 2007 Fusion Eng. Des. 82 463 doi: 10.1016/j.fusengdes.2007.03.012
    [27]
    Hu C D et al 2015 Plasma Sci. Technol. 17 817 doi: 10.1088/1009-0630/17/10/02
    [28]
    Joshua B et al 2018 TRANSP is a 1.5D equilibrium and transport solver for interpretation and prediction of tokamak discharges Princeton: Princeton Plasma Physics Laboratory doi: 10.11578/dc.20180627.4.
    [29]
    Pankin A et al 2004 Comput. Phys. Commun. 159 157 doi: 10.1016/j.cpc.2003.11.002
    [30]
    White R B. Theory of Toroidally Confined Plasmas 3rd ed (River Edge: World Scientific Publishing
    [31]
    Van Zeeland M A et al 2011 Phys. Plasmas 18 056114 doi: 10.1063/1.3574663
    [32]
    Wolle B et al 1991 Plasma Phys. Control. Fusion 33 1863 doi: 10.1088/0741-3335/33/14/009
    [33]
    Ge L J et al 2018 Plasma Phys. Control. Fusion 60 095004 doi: 10.1088/1361-6587/aad06c
    [34]
    Chen Y J et al 2014 Plasma Phys. Control. Fusion 56 105006 doi: 10.1088/0741-3335/56/10/105006
    [35]
    Zheng Z et al 2018 Plasma Sci. Technol. 20 065103 doi: 10.1088/2058-6272/aab262
    [36]
    Heidbrink W W Sadler G J 1994 Nucl. Fusion 34 535 doi: 10.1088/0029-5515/34/4/I07
    [37]
    Heidbrink W W and White R B 2020 Phys. Plasmas 27 030901 doi: 10.1063/1.5136237
    [38]
    Paul E J et al 2022 Nucl. Fusion 62 126054 doi: 10.1088/1741-4326/ac9b07
    [39]
    Goldston R J, White R B and Boozer A H 1981 Phys. Rev. Lett. 47 647 doi: 10.1103/PhysRevLett.47.647
    [40]
    Tardini G et al 2013 Nucl. Fusion 53 063027 doi: 10.1088/0029-5515/53/6/063027
    [41]
    Casper T et al 2014 Nucl. Fusion 54 013005 doi: 10.1088/0029-5515/54/1/013005
    [42]
    Sips A C C et al 2015 Phys. Plasmas 22 021804 doi: 10.1063/1.4904015
    [43]
    Huang J et al 2020 Plasma Phys. Control. Fusion 62 014019 doi: 10.1088/1361-6587/ab56a5
    [44]
    Evensen H T et al 1999 Nucl. Fusion 39 133 doi: 10.1088/0029-5515/39/1/309
    [45]
    Esposito B et al 1993 Plasma Phys. Control. Fusion 35 1433 doi: 10.1088/0741-3335/35/10/006
    [46]
    Wesson J and Campbell D J 2011 Tokamaks (Oxford: Oxford University Press
    [47]
    Xu Y F et al 2021 Plasma Sci. Technol. 23 095102 doi: 10.1088/2058-6272/ac0717
    [48]
    Chen Z et al 2013 Nucl. Fusion 53 063023 doi: 10.1088/0029-5515/53/6/063023
    [49]
    Zheng Y et al 2023 Nucl. Fusion 63 046016 doi: 10.1088/1741-4326/acbdad
    [50]
    Song C Y et al 2023 Plasma Phys. Control. Fusion 65 025003 doi: 10.1088/1361-6587/acaa55
  • Related Articles

    [1]Huasheng XIE, Xiang GU, Yumin WANG, Quanyun WANG, Feng WANG, Haozhe KONG, Jiaqi DONG, Yunfeng LIANG, Yueng-Kay Martin PENG, Minsheng LIU, the EHL-2 Team. Preliminary considerations and challenges of proton-boron fusion energy extraction on the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024010. DOI: 10.1088/2058-6272/adae43
    [2]Haowei ZHANG, Zhiwei MA. Validation of the current and pressure coupling schemes with nonlinear simulations of TAE and analysis on the linear stability of tearing mode in the presence of energetic particles[J]. Plasma Science and Technology, 2023, 25(4): 045105. DOI: 10.1088/2058-6272/aca6c0
    [3]Jixing YANG, Guoyong FU, Wei SHEN, Minyou YE. Linear hybrid simulations of low-frequency fishbone instability driven by energetic passing particles in tokamak plasmas[J]. Plasma Science and Technology, 2022, 24(6): 065101. DOI: 10.1088/2058-6272/ac5972
    [4]Yunpeng ZOU (邹云鹏), Minyou YE (叶民友). Alfvén eigenmode stability analysis and energetic particle transport prediction for CFETR hybrid scenario[J]. Plasma Science and Technology, 2019, 21(9): 95104-095104. DOI: 10.1088/2058-6272/ab2110
    [5]X T DING (丁玄同), W CHEN (陈伟). Review of the experiments for energetic particle physics on HL-2A[J]. Plasma Science and Technology, 2018, 20(9): 94008-094008. DOI: 10.1088/2058-6272/aad27a
    [6]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [7]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [8]SANG Ziru(桑子儒), LI Feng(李锋), JIANG Xiao(江晓), JIN Ge(金革). A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments[J]. Plasma Science and Technology, 2014, 16(4): 400-405. DOI: 10.1088/1009-0630/16/4/18
    [9]LI Yingying (李颖颖), FU Jia (符佳), SHI Yuejiang (石跃江), ZHANG Wei (张伟), SHEN Yongcai (沈永才), WANG Fudi (王福地), et al. Spectroscopic Measurement of Neutral Particle Influx Ratio on EAST[J]. Plasma Science and Technology, 2013, 15(6): 493-498. DOI: 10.1088/1009-0630/15/6/02
    [10]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06

Catalog

    Figures(18)  /  Tables(6)

    Article views (48) PDF downloads (22) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return