Citation: | Zhe WANG, Zhen SUN, Guizhong ZUO, Kai WU, Yao HUANG, Wei XU, Ming HUANG, Zhitai ZHOU, Yanhong GUAN, Haotian QIU, Rajesh MAINGI, Jiansheng HU. Fuel recycling feedback control via real-time boron powder injection in EAST with full metal wall[J]. Plasma Science and Technology, 2024, 26(12): 125105. DOI: 10.1088/2058-6272/ad811f |
A feedback control of fuel recycling via real-time boron powder injection, addressing the issue of continuously increasing recycling in long-pulse plasma discharges, has been successfully developed and implemented on EAST tokamak. The feedback control system includes four main parts: the impurity powder dropper (IPD), a diagnostic system measuring fuel recycling level represented by Dα emission, a plasma control system (PCS) implementing the Proportional Integral Derivative (PID) algorithm, and a signal converter connecting the IPD and PCS. Based on this control system, both active control and feedback control experiments have recently been performed on EAST with a full metal wall. The experimental results show that the fuel recycling can be gradually reduced to lower level as PCS control voltage increases. In the feedback control experiments, it is also observed that the Dα emission is reduced to the level below the target Dα value by adjusting boron injection flow rate, indicating successful implementation of the fuel recycling feedback control on EAST. This technique provides a new method for fuel recycling control of long pulse and high parameter plasma operations in future fusion devices.
This research was funded by the National Key Research and Development Program of China (Nos. 2022YFE03130000 and 2022YFE03130003), National Natural Science Foundation of China (Nos. 12205336 and 12475208), The Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB0790102), the Provincial Natural Science Foundation of Anhui (No. 2408085J002), and Interdisciplinary and Collaborative Teams of CAS.
[1] |
Loarer T 2009 J. Nucl. Mater. 390–391 20 doi: 10.1016/j.jnucmat.2009.01.039
|
[2] |
Hu J S et al 2015 Phys. Rev. Lett. 114 055001 doi: 10.1103/PhysRevLett.114.055001
|
[3] |
Gong X Z et al 2023 Plasma Sci. Technol. 25 022001 doi: 10.1088/2058-6272/ac9cc6
|
[4] |
Sun Z et al 2019 Nucl. Mater. Energy 19 124 doi: 10.1016/j.nme.2019.02.029
|
[5] |
Xu W et al 2020 Plasma Phys. Control. Fusion 62 085012 doi: 10.1088/1361-6587/ab9b3a
|
[6] |
Yu Y W et al 2019 Nucl. Fusion 59 126036 doi: 10.1088/1741-4326/ab3ead
|
[7] |
Li C L et al 2022 Plasma Sci. Technol. 24 095104 doi: 10.1088/2058-6272/ac6650
|
[8] |
Bell M G et al 2009 Plasma Phys. Control. Fusion 51 124054 doi: 10.1088/0741-3335/51/12/124054
|
[9] |
Nespoli F et al 2023 Nucl. Fusion 63 076001 doi: 10.1088/1741-4326/acd465
|
[10] |
Krieger K et al 2023 Nucl. Mater. Energy 34 101374 doi: 10.1016/j.nme.2023.101374
|
[11] |
Bortolon A et al 2020 Nucl. Fusion 60 126010 doi: 10.1088/1741-4326/abaf31
|
[12] |
Bodner G et al 2022 Nucl. Fusion 62 086020 doi: 10.1088/1741-4326/ac70ea
|
[13] |
Li J and Wan Y 2021 Engineering 7 1523 doi: 10.1016/j.eng.2021.10.004
|
[14] |
Nagy A et al 2018 Rev. Sci. Instrum. 89 10K121 doi: 10.1063/1.5039345
|
[15] |
Zuo G Z et al 2023 Mater. Res. Express 10 126402 doi: 10.1088/2053-1591/ad1355
|
[16] |
Oyama N et al 2009 Nucl. Fusion 49 065026 doi: 10.1088/0029-5515/49/6/065026
|
[17] |
Yu Y W et al 2023 Nucl. Mater. Energy 34 101333 doi: 10.1016/j.nme.2022.101333
|
[18] |
Yu Y W et al 2017 Phys. Scr. T170 014070 doi: 10.1088/1402-4896/aa8fd9
|
[19] |
Loarer T et al 2007 Nucl. Fusion 47 1112 doi: 10.1088/0029-5515/47/9/007
|
[20] |
Johnson L C and Hinnov E 1973 J. Quant. Spectrosc. Radiat. Transf. 13 333 doi: 10.1016/0022-4073(73)90064-2
|
[21] |
Xu Z et al 2016 Rev. Sci. Instrum. 87 11D429 doi: 10.1063/1.4961294
|
[22] |
Sun Z et al 2021 Nucl. Fusion 61 014002 doi: 10.1088/1741-4326/abc763
|
[23] |
Xu W et al 2023 Nucl. Mater. Energy 34 101359 doi: 10.1016/j.nme.2022.101359
|
[1] | Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1 |
[2] | Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e |
[3] | N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7 |
[4] | Jiaojiao LI (李娇娇), Qianghua YUAN (袁强华), Xiaowei CHANG (常小伟), Yong WANG (王勇), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50kHz/ 33MHz dual-frequency atmospheric-pressure plasma jet[J]. Plasma Science and Technology, 2017, 19(4): 45505-045505. DOI: 10.1088/2058-6272/aa57e4 |
[5] | WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08 |
[6] | WANG Xiaomin(王晓敏), YUAN Qianghua(袁强华), ZHOU Yongjie(周永杰), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Deposition of Polymer Thin Film Using an Atmospheric Pressure Micro-Plasma Driven by Dual-Frequency Excitation[J]. Plasma Science and Technology, 2014, 16(1): 68-72. DOI: 10.1088/1009-0630/16/1/15 |
[7] | Panagiotis SVARNAS. Vibrational Temperature of Excited Nitrogen Molecules Detected in a 13.56 MHz Electrical Discharge by Sheath-Side Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 891-895. DOI: 10.1088/1009-0630/15/9/11 |
[8] | LIU Wenyao (刘文耀), ZHU Aimin (朱爱民), Li Xiaosong (李小松), ZHAO Guoli (赵国利), et al.. Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF 4 Plasma Using Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2013, 15(9): 885-890. DOI: 10.1088/1009-0630/15/9/10 |
[9] | YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07 |
[10] | WU Jing (吴静), ZHANG Pengyun (张鹏云), SUN Jizhong (孙继忠), YAO Lieming (姚列明), DUAN Xuru(段旭如). Diagnostics of Parameters by Optical Emission Spectroscopy and Langmuir Probe in Mixtures (SiH4/C2H4/Ar) Ratio-Frequency Discharge[J]. Plasma Science and Technology, 2011, 13(5): 561-566. |