Citation: | Yanze SONG, Jinjian ZHAO, Bowen ZHENG, Zihao XIE, Guishu LIANG, Qing XIE. Atmospheric pressure plasma jet deposition of TiO2 layer on alumina/epoxy to improve electrical properties[J]. Plasma Science and Technology, 2025, 27(1): 015501. DOI: 10.1088/2058-6272/ad8f0b |
In gas-insulated lines, basin-insulators can accumulate charge under non-uniform electric fields, distorting the field distribution and potentially causing surface flashover, which threatens the stability of power systems. In this study, Atmospheric Pressure Plasma Jet (APPJ) technology was used to deposit TiO2 on the surface of alumina/epoxy (Al2O3/EP) composites. The impact of deposition of TiO2 layer on the surface morphology and chemical composition of Al2O3/EP was studied using testing methods such as Scanning Electron Microscope, X-ray photoelectron spectroscopy, Fourier Transform Infrared Spectrometer, and Energy Dispersive Spectrometer. It was found that APPJ creates a dense, rough Ti-O layer on the Al2O3/EP surface, which bonds tightly with the substrate. The efficacy of APPJ was found to depend on processing time, with optimal results observed at 3 min, DC and AC flashover voltages increased by 29.6% and 15.7%, respectively. TiO2 layer enhances the conductivity of the resin and shallows trap levels. Through the synergistic effects of various factors, surface charges are efficiently dissipated and evenly distributed. This study not only reveals the physicochemical process of TiO2 deposition via APPJ but also integrates surface characteristics with electrical performance. The findings offer a new strategy to enhance surface flashover voltage and ensure equipment safety.
The authors acknowledge National Natural Science Foundation of China (Nos. 52007065 and 52277147), the Fundamental Research Funds for the Central Universities (No. 2022MS071).
[1] |
Xie Q et al 2018 Plasma Sci. Technol. 20 025504 doi: 10.1088/2058-6272/aa97d0
|
[2] |
Guo N et al 2024 Polym. Compos. 45 3536 doi: 10.1002/pc.28007
|
[3] |
Liang L et al 2024 Polym. Compos. 45 181 doi: 10.1002/pc.27767
|
[4] |
Li J L, Wang C and Lu K Y 2020 Polym. Bull. 77 3429 doi: 10.1007/s00289-019-02931-8
|
[5] |
Chen Y F et al 2013 Study on properties of BF/EP-PU composite In: 2013 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Shenzhen: IEEE 2013: 871
|
[6] |
Shao S et al 2020 Polym. Compos. 41 4514 doi: 10.1002/pc.25728
|
[7] |
Wu X et al 2024 Polym. Eng. Sci. 64 1812 doi: 10.1002/pen.26661
|
[8] |
Wang Q, Li Z and Yin Y 2014 Trans. China Electrotech. Soc. 29 230 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.2014.12.030
|
[9] |
Li Z Y et al 2018 Surface charge accumulation of epoxy/Al2O3 nanocomposites under magnetic field In: 2018 IEEE 2nd International Conference on Dielectrics Budapest: IEEE 2018: 1
|
[10] |
Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557 doi: 10.1109/TDEI.2017.006321
|
[11] |
Yamamoto O et al 1997 IEEE Trans. Dielectr. Electr. Insul. 4 413 doi: 10.1109/94.625357
|
[12] |
Yan J Y et al 2021 Plasma Sci. Technol. 23 064012 doi: 10.1088/2058-6272/abef55
|
[13] |
Song Y Z et al 2023 Trans. China Electrotech. Soc. 38 3984 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.221917
|
[14] |
Plotnikov A P and Feklistov E G 2020 Mechanism of thin metal films destruction by electric explosion In: 2020 IEEE 3rd International Conference on Dielectrics Valencia: IEEE 2020: 177
|
[15] |
Kong M G and Lee Y P 2000 Surface flashover dynamics in metallized polymer film capacitors In: 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena Victoria: IEEE 2000: 816
|
[16] |
Li S T 2020 High Volt. 5 122 doi: 10.1049/hve.2020.0021
|
[17] |
Yu K K et al 2009 Trans. China Electrotech. Soc. 24 28 (in Chinese) doi: 10.3321/j.issn:1000-6753.2009.01.006
|
[18] |
Wu G T et al 2020 Polym. Compos. 41 5281 doi: 10.1002/pc.25793
|
[19] |
Shen W, Li Z and Li S T 2020 Proc. CSEE 40 7143 (in Chinese) doi: 10.13334/j.0258-8013.pcsee.201267
|
[20] |
Li F et al 2022 One-step surface functionally graded modification of insulating materials based on surface dielectric barrier discharge In: 2022 IEEE International Conference on Plasma Science Seattle: IEEE 2022: 1
|
[21] |
Khalkho J S, Chevuri S V and Dagarapu B K 2023 Int. J. Metalcast. 17 272 doi: 10.1007/s40962-022-00760-6
|
[22] |
Hou Y P et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2816 doi: 10.1109/TDEI.2016.7736841
|
[23] |
Ding L J et al 2001 Proc. CSEE 21 27 (in Chinese) doi: 10.13334/j.0258-8013.pcsee.2001.09.007
|
[24] |
Li A et al 2015 High Volt. Eng. 41 410 (in Chinese) doi: 10.13336/j.1003-6520.hve.2015.02.008
|
[25] |
Zeng J K et al 2024 Proc. CSEE 44 5810 (in Chinese) doi: 10.13334/j.0258-8013.pcsee.230540
|
[26] |
Zhu C C et al 2021 Proc. CSEE 41 4354 (in Chinese) doi: 10.13334/j.0258-8013.pcsee.202295
|
[27] |
Pinto D et al 2015 J. Nano Res. 30 9 doi: 10.4028/www.scientific.net/JNanoR.30.9
|
[28] |
Wetzel B, Haupert F and Zhang M Q 2003 Compos. Sci. Technol. 63 2055 doi: 10.1016/S0266-3538(03)00115-5
|
[29] |
Wetzel B et al 2006 Eng. Fract. Mech. 73 2375 doi: 10.1016/j.engfracmech.2006.05.018
|
[30] |
Shao T et al 2015 IEEE Trans. Plasma Sci. 43 726 doi: 10.1109/TPS.2014.2359515
|
[31] |
Kong D L et al 2021 Acta Phys. Sin 70 095205 (in Chinese) doi: 10.7498/aps.70.20202181
|
[32] |
Patrocínio A O T et al 2008 Appl. Surf. Sci. 254 1874 doi: 10.1016/j.apsusc.2007.07.185
|
[33] |
Du B X et al 2018 High Volt. Eng. 44 2646 (in Chinese) doi: 10.13336/j.1003-6520.hve.20180731023
|
[34] |
Wang J et al 2016 Trans. China Electrotech. Soc. 31 213 (in Chinese) doi: 10.19595/j.cnki.1000-6753.tces.2016.15.025
|
[35] |
Li S T et al 2009 Surface flashover characteristics in vacuum of ZnO Varistor+Al2O3 Ceramic+ZnO varistor insulators In: 2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials Harbin: IEEE 2009: 808
|
[36] |
Shao T et al 2014 Appl. Phys. Lett. 105 071607 doi: 10.1063/1.4893884
|
[1] | Dian ZHANG (张点), Jun ZHANG (张军), Song LI (李嵩), Jing LIU (刘静), Huihuang ZHONG (钟辉煌). Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge[J]. Plasma Science and Technology, 2019, 21(4): 44003-044003. DOI: 10.1088/2058-6272/aafbc3 |
[2] | Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432 |
[3] | Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8 |
[4] | Pengfei ZHANG (张鹏飞), Yang HU (胡杨), Jiang SUN (孙江), Yan SONG (宋岩), Jianfeng SUN (孙剑锋), Zhiming YAO (姚志明), Peitian CONG (丛培天), Mengtong QIU (邱孟通), Aici QIU (邱爱慈). Design and experimental research on a selfmagnetic pinch diode under MV[J]. Plasma Science and Technology, 2018, 20(1): 14014-014014. DOI: 10.1088/2058-6272/aa8592 |
[5] | Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51 |
[6] | JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15 |
[7] | HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12 |
[8] | DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04 |
[9] | YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14 |
[10] | SUN Jiang (孙江), SUN Jianfeng (孙剑锋), YANG Hailiang (杨海亮), ZHANG Pengfei (张鹏飞), et al.. Plasma Density Influence on the Properties of a Plasma Filled Rod Pinch Diode[J]. Plasma Science and Technology, 2013, 15(9): 904-907. DOI: 10.1088/1009-0630/15/9/14 |
1. | Li, J., Xu, Z., Xia, Y. et al. Strategy for preparing nanocrystalline Ta-N gradient layer with enhanced mechanical and tribological performance via microwave plasma nitriding. Ceramics International, 2024, 50(21): 41636-41647. DOI:10.1016/j.ceramint.2024.08.013 |
2. | Gao, X., Liu, J., Bo, L. et al. Achieving superb mechanical properties in CoCrFeNi high-entropy alloy microfibers via electric current treatment. Acta Materialia, 2024. DOI:10.1016/j.actamat.2024.120203 |
3. | Li, B., Zhang, X., Tang, S. et al. Influence of spraying power on microstructure, phase composition and nanomechanical properties of plasma-sprayed nanostructured Yb-silicate environmental barrier coatings. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.130450 |
4. | Wang, Z., Niu, S., Lou, M. et al. The Joint Formation Mechanism, Microstructure, and Mechanical Performance of Resistance Rivet-Welded Mg/Steel Joints. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-10611-6 |
5. | Niu, J., Miao, B., Guo, J. et al. Leveraging Deep Neural Networks for Estimating Vickers Hardness from Nanoindentation Hardness. Materials, 2024, 17(1): 148. DOI:10.3390/ma17010148 |
6. | Dong, Z., Pan, R., Zhou, T. et al. Microstructure and mechanical property of Ti/Cu ultra-thin foil lapped joints with different weld depths by nanosecond laser welding. Journal of Manufacturing Processes, 2023. DOI:10.1016/j.jmapro.2023.10.082 |
7. | Sun, H., Yi, G., Wan, S. et al. Effects of Ni-5 wt% Al/Bi2O3 addition and heat treatment on mechanical and tribological properties of atmospheric plasma sprayed Al2O3 coating. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129935 |
8. | Mishchenko, Y., Patnaik, S., Wallenius, J. et al. Thermophysical properties and oxidation behaviour of the U0.8Zr0.2N solid solution. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101459 |
9. | Zakaryan, M.K., Malakpour Estalaki, S., Kharatyan, S. et al. Spontaneous Crystallization for Tailoring Polymorphic Nanoscale Nickel with Superior Hardness. Journal of Physical Chemistry C, 2022, 126(29): 12301-12312. DOI:10.1021/acs.jpcc.2c03612 |
10. |
Stekovic, S., Romero-Ramirez, R., Selegård, L. Effect of Nitriding on Microstructure and Mechanical Properties on a Ti64 Alloy for Aerospace Applications. 2022.
![]() |
11. | Kumar, R.R., Gupta, R.K., Sarkar, A. et al. Vacuum diffusion bonding of α‑titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics. Materials Characterization, 2022. DOI:10.1016/j.matchar.2021.111607 |
12. | Sun, H., Yi, G., Wan, S. et al. Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings. Surface and Coatings Technology, 2021. DOI:10.1016/j.surfcoat.2021.127818 |
13. | Raj, M., Prasad, M.J.N.V., Narasimhan, K. Microstructure and Mechanical Properties of Ti-6Al-4V Alloy/Interstitial Free Steel Joint Diffusion Bonded with Application of Copper and Nickel Interlayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(12): 6234-6247. DOI:10.1007/s11661-020-06002-w |