Advanced Search+
Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Xiong DENG, Yinxin ZHU. Experimental and numerical study on double wedge shock/shock interaction controlled by a single-pulse plasma synthetic jet[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad91e9
Citation: Wei XIE, Zhenbing LUO, Yan ZHOU, Qiang LIU, Xiong DENG, Yinxin ZHU. Experimental and numerical study on double wedge shock/shock interaction controlled by a single-pulse plasma synthetic jet[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/ad91e9

Experimental and numerical study on double wedge shock/shock interaction controlled by a single-pulse plasma synthetic jet

More Information
  • The phenomenon of shock/shock interaction (SSI) is widely observed in high-speed flow, and the double wedge SSI represents one of the typical problems encountered. The control effect of single-pulse plasma synthetic jet (PSJ) on double wedge type-VI and type-V SSI was investigated experimentally and numerically, and the influence of discharge energy was also explored. The findings indicate that the interaction between PSJ and the high-speed freestream results in the formation of a plasma layer and a jet shock, which collectively governs the control of SSI. The control mechanism of single-pulse PSJ on SSI lies in its capacity to attenuate both shock and SSI. For type-VI SSI, the original second-wedge oblique shock is eliminated under the control of PSJ, resulting in a new type-VI SSI formed by the jet shock and the first-wedge oblique shock. For type-V SSI, the presence of PSJ effectively mitigates the intensity of Mach stem, supersonic jet, and reflected shocks, thereby facilitating its transition into type-VI SSI. The numerical results indicate that the peak pressure can be reduced by approximately 32.26% at maximum. Furthermore, the development of PSJ also extends in the Z direction. The pressure decreases in the area affected by both PSJ and jet shock due to the attenuation of the SSI zone. With increasing discharge energy, the control effect of PSJ on SSI is gradually enhanced.

  • This work was supported by the Independent Innovation Science Fund of National University of Defense Technology (No. 24-ZZCX-BC-05), National Natural Science Foundation of China (Nos. 92271110 and 12202488), the Major National Science and Technology Project (No. J2019-Ⅲ-0010-0054), the National Postdoctoral Researcher Program of China (No. GZB20230985), and the Natural Science Program of National University of Defense Technology (No. ZK22-30).

  • [1]
    Babinsky H and Harvey J K 2011 Shock Wave-Boundary-Layer Interactions (Cambridge: Cambridge University Press) doi: 10.1017/CBO9780511842757
    [2]
    Knight D et al 2017 Prog. Aeronaut. Sci. 90 39 doi: 10.1016/j.paerosci.2017.02.001
    [3]
    Bai C Y and Wu Z N 2022 J. Fluid Mech. 941 A45 doi: 10.1017/jfm.2022.340
    [4]
    Gaitonde D V and Adler M C 2023 Annu. Rev. Fluid Mech. 55 291 doi: 10.1146/annurev-fluid-120720-022542
    [5]
    Edney B 1968 Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock Stockholm Flygtekniska Forsoksanstalten doi: 10.2172/4480948
    [6]
    Keyes J W and Hains F D 1973 Analytical and experimental studies of shock interference heating in hypersonic flows Washington: National Aeronautics and Space Administration
    [7]
    Holden M et al 2010 A review of experimental studies with the double cone and hollow cylinder/flare configurations in the LENS hypervelocity tunnels and comparisons with Navier-Stokes and DSMC computations In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando: AIAA 2010: AIAA 2010-1281 doi: 10.2514/6.2010-1281
    [8]
    Eggers T, Dittrich R and Varvill R 2011 Numerical analysis of the SKYLON spaceplane in hypersonic flow In: 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference San Francisco: AIAA 2011: AIAA 2011-2298 doi: 10.2514/6.2011-2298
    [9]
    Swantek A and Austin J 2012 Heat transfer on a double wedge geometry in hypervelocity air and nitrogen flows In: 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Nashville: AIAA 2012 doi: 10.2514/6.2012-284
    [10]
    Windisch C, Reinartz B U and Müller S 2016 AIAA J. 54 1846 doi: 10.2514/1.J054298
    [11]
    Hornung H G, Gollan R J and Jacobs P A 2021 J. Fluid Mech. 916 A5 doi: 10.1017/jfm.2021.203
    [12]
    Olejniczak J, Wright M J and Candler G V 1997 J. Fluid Mech. 352 1 doi: 10.1017/S0022112097007131
    [13]
    Durna A S and Celik B 2020 AIAA J. 58 1689 doi: 10.2514/1.J058754
    [14]
    Reinert J D, Candler G V and Komives J R 2020 AIAA J. 58 14055 doi: 10.2514/1.J058789
    [15]
    Ninni D et al 2022 Acta Astronaut. 191 178 doi: 10.1016/j.actaastro.2021.10.040
    [16]
    Sawant S S, Theofilis V and Levin D A 2022 J. Fluid Mech. 941 A7 doi: 10.1017/jfm.2022.276
    [17]
    Tong F L, Duan J Y and Li X L 2021 Comput. Fluids 229 105087 doi: 10.1016/j.compfluid.2021.105087
    [18]
    Yang H S et al 2022 Plasma Sci. Technol. 24 095503 doi: 10.1088/2058-6272/ac6d42
    [19]
    Fang Z Q et al 2024 Plasma Sci. Technol. 26 025503 doi: 10.1088/2058-6272/ad0c99
    [20]
    Wang H Y et al 2021 Phys. Fluids 33 116104 doi: 10.1063/5.0065367
    [21]
    Zhang X, Zhao Y G and Yang C 2023 Chin. J. Aeronaut. 36 1 doi: 10.1016/j.cja.2022.01.026
    [22]
    Cheng L et al 2024 Phys. Fluids 36 016154 doi: 10.1063/5.0185175
    [23]
    Tang M X, Wu Y and Wang H Y 2022 Acta Astronaut. 198 577 doi: 10.1016/j.actaastro.2022.07.010
    [24]
    Kong Y K et al 2022 Contrib. Plasma Phys. 62 e202200062 doi: 10.1002/ctpp.202200062
    [25]
    Yang B et al 2024 Aerospace 11 60 doi: 10.3390/aerospace11010060
    [26]
    Zhang C B et al 2022 J. Phys. D: Appl. Phys. 55 325202 doi: 10.1088/1361-6463/ac7014
    [27]
    Surzhikov S T 2020 Fluid Dyn. 55 825 doi: 10.1134/S0015462820060117
    [28]
    Grossman K R, Cybyk B Z and VanWie D M V 2023 Sparkjet actuators for flow control In: 41st Aerospace Sciences Meeting and Exhibit Reno: AIAA 2023 doi: 10.2514/6.2003-57
    [29]
    Xie W et al 2021 Acta Astronaut. 188 416 doi: 10.1016/j.actaastro.2021.07.032
    [30]
    Li S et al 2023 Phys. Fluids 35 036113 doi: 10.1063/5.0142156
    [31]
    Geng X et al 2021 Phys. Fluids 33 067113 doi: 10.1063/5.0048300
    [32]
    Zheng B R et al 2023 Plasma Sci. Technol. 25 025503 doi: 10.1088/2058-6272/ac8cd4
    [33]
    Liu R B et al 2024 Aerosp. Sci. Technol. 145 108876 doi: 10.1016/j.ast.2024.108876
    [34]
    Zhou Y et al 2019 AIAA J. 57 879 doi: 10.2514/1.J057465
    [35]
    Narayanaswamy V, Raja L L and Clemens N T 2012 Phys. Fluids 24 076101 doi: 10.1063/1.4731292
    [36]
    Greene B R et al 2015 Shock Waves 25 495 doi: 10.1007/s00193-014-0524-5
    [37]
    Wang P and Shen C B 2019 J. Zhejiang Univ. Sci. A 20 701 doi: 10.1631/jzus.A1900130
    [38]
    Xie W et al 2024 Aerosp. Sci. Technol. 146 108971 doi: 10.1016/j.ast.2024.108971
    [39]
    Xie W et al 2022 Chin. J. Aeronaut. 35 75 doi: 10.1016/j.cja.2021.10.027
    [40]
    Li J W, Chi S Q and Sun Z K 2024 J. Aerosp. Eng. 37 04024069 doi: 10.1061/JAEEEZ.ASENG-5312
    [41]
    Sary G et al 2014 AIAA J. 52 1591 doi: 10.2514/1.J052521
    [42]
    Capitelli M et al 2000 Eur. Phys. J. D 11 279 doi: 10.1007/s100530070094
    [43]
    Settles G S and Hargather M J 2017 Meas. Sci. Technol. 28 042001 doi: 10.1088/1361-6501/aa5748
  • Cited by

    Periodical cited type(20)

    1. Kong, W., Dong, H., Wu, J. et al. Control of frictional and total drag by porous media at high Reynolds number wall turbulence conditions. Physics of Fluids, 2025, 37(3): 035205. DOI:10.1063/5.0260094
    2. Zheng, B., Qi, S., Yu, M. et al. Turbulent drag reduction by sector-shaped counter-flow dielectric barrier discharge plasma actuator. Chinese Physics B, 2025, 34(2): 025205. DOI:10.1088/1674-1056/ada1c6
    3. Su, Z., Zong, H., Liang, H. et al. Investigation of pulsed direct-current plasma jets in a turbulent boundary layer. Physics of Fluids, 2024, 36(3): 035128. DOI:10.1063/5.0190336
    4. Zheng, H., Gao, C., Wu, B. et al. Drag reduction control of turbulent boundary layer based on plasma actuation | [基于等离子体激励的湍流边界层减阻控制]. Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38(5): 1157-1165. DOI:10.13224/j.cnki.jasp.20210546
    5. SU, Z., ZONG, H., LIANG, H. et al. Minimizing airfoil drag at low angles of attack with DBD-based turbulent drag reduction methods. Chinese Journal of Aeronautics, 2023, 36(4): 104-119. DOI:10.1016/j.cja.2022.11.019
    6. Yan, R., Wu, B., Gao, C. et al. Enhanced heat transfer in Poiseuille-Rayleigh-Bénard flows based on dielectric-barrier-discharge plasma actuation. Physics of Plasmas, 2023, 30(3): 033501. DOI:10.1063/5.0131414
    7. Su, Z., Zong, H., Liang, H. et al. Optimization in frequency characteristics of an oscillating dielectric barrier discharge plasma actuator. Sensors and Actuators A: Physical, 2023. DOI:10.1016/j.sna.2023.114195
    8. Xu, Z., Wu, B., Gao, C. et al. Experimental investigation of dynamic stall flow control using a microsecond-pulsed plasma actuator. Plasma Science and Technology, 2023, 25(3): 035509. DOI:10.1088/2058-6272/aca18f
    9. Zhang, X., Wang, X. RESEARCH PROGRESS AND OUTLOOK OF FLOW FIELD CREATED BY DIELECTRIC BARRIER DISCHARGE PLASMA ACTUATORS DRIVEN BY A SINUSOIDAL ALTERNATING CURRENT HIGH-VOLTAGE POWER | [正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望]. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 285-298. DOI:10.6052/0459-1879-22-377
    10. Zhao, J., Zhang, H., Meng, X. et al. Aerodynamic effects of a tube-type AC-SDBD plasma actuator. 2023. DOI:10.2514/6.2023-3747
    11. Su, Z., Zong, H., Liang, H. et al. Progress and outlook of plasma-based turbulent skin-friction drag reduction | [等离子体湍流摩擦减阻研究进展与展望]. Kongqi Donglixue Xuebao/Acta Aerodynamica Sinica, 2023, 41(9): 1-19. DOI:10.7638/kqdlxxb-2023.0083
    12. Chen, J., Zong, H., Song, H. et al. AI-based real-time noise reduction of flow field pressure signals under plasma electromagnetic interference | [等离子体电磁干扰下圆柱绕流壁面压力信号 AI 实时降噪]. Shiyan Liuti Lixue/Journal of Experiments in Fluid Mechanics, 2023, 37(4): 59-65. DOI:10.11729/syltlx20230030
    13. Zong, H., Wu, Y., Liang, H. et al. Experimental Investigation and Intelligent Optimization of Airfoil Zero-Lift Drag Reduction with Plasma Actuators. AIAA Journal, 2023, 61(1): 223-240. DOI:10.2514/1.J062099
    14. Hui, W., Meng, X., Li, H. et al. Flow induced by a pair of plasma actuators on a circular cylinder in still air under duty-cycle actuation. Physics of Fluids, 2022, 34(12): 123613. DOI:10.1063/5.0124744
    15. ZHENG, B., JIN, Y., YU, M. et al. Turbulent drag reduction by spanwise slot blowing pulsed plasma actuation. Plasma Science and Technology, 2022, 24(11): 114003. DOI:10.1088/2058-6272/ac72e2
    16. Zong, H., Su, Z., Liang, H. et al. Experimental investigation and reduced-order modeling of plasma jets in a turbulent boundary layer for skin-friction drag reduction. Physics of Fluids, 2022, 34(8): 0104609. DOI:10.1063/5.0104609
    17. Li, Y., Wu, Y., Liang, H. et al. Exploration and outlook of plasma-actuated gas dynamics | [等离子体激励气动力学探索与展望]. Advances in Mechanics, 2022, 52(1): 1-32. DOI:10.6052/1000-0992-21-044
    18. Zhu, Z., Fradera-Soler, P., Jo, W. et al. Numerical simulation of the flow around a square cylinder under plasma actuator control. Physics of Fluids, 2021, 33(12): 123611. DOI:10.1063/5.0072081
    19. Zhao, L., Xiao, Z., Liu, F. Simulation of flow induced by single-dielectric-barrier-discharge plasma actuator using a high-order flux-reconstruction scheme. Physics of Fluids, 2021, 33(4): 047108. DOI:10.1063/5.0046900
    20. Li, Y., Gao, C., Wu, B. et al. Turbulent boundary layer control with a spanwise array of DBD plasma actuators. Plasma Science and Technology, 2021, 23(2): 025501. DOI:10.1088/2058-6272/abce0d

    Other cited types(0)

Catalog

    Figures(14)  /  Tables(1)

    Article views (16) PDF downloads (4) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return